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Abstract

Popular debiased estimation methods for causal inference—such as augmented in-

verse propensity weighting and targeted maximum likelihood estimation—enjoy desir-

able asymptotic properties like statistical efficiency and double robustness but they

can produce unstable estimates when there is limited overlap between treatment and

control, requiring additional assumptions or ad hoc adjustments in practice (e.g., trun-

cating propensity scores). In contrast, simple plug-in estimators are stable but lack

desirable asymptotic properties. We propose a novel debiasing approach that achieves

the best of both worlds, producing stable plug-in estimates with desirable asymptotic

properties. Our constrained learning framework solves for the best plug-in estimator

under the constraint that the first-order error with respect to the plugged-in quantity is

zero, and can leverage flexible model classes including neural networks and tree ensem-

bles. In several experimental settings, including ones in which we handle text-based

covariates by fine-tuning language models, our constrained learning-based estimator

outperforms basic versions of one-step estimation and targeting in challenging settings

with limited overlap between treatment and control, and performs similarly otherwise.

1 Introduction

Causal inference is the bedrock of scientific decision-making. In many settings, estimat-

ing causal effects accurately requires modeling high-dimensional and complex nuisance

parameters—quantities that, while not of primary interest, must be estimated correctly to

determine the causal effect. For example, when estimating the average treatment effect

(ATE), a common approach is to train a flexible machine learning model to directly model

the outcome variable as a function of the treatment assignment and other observed covari-

ates. Then, to estimate the ATE, the trained machine learning model (nuisance parameter)

is used to estimate outcomes for each unit under the treatment and under the control. The
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ATE is then computed by taking the average of the differences in the predicted values for

each observation. This procedure is what we refer to as the naive plug-in (a.k.a. “direct”)

estimator, which entirely trusts the fitted ML model. Although straightforward and easy

to communicate, such an approach has the drawback that the machine learning model is

fitted to optimize prediction accuracy and does not consider the downstream causal esti-

mation task. As a result, this naive plug-in estimator is suboptimal and sensitive to errors

in the ML model [8, 13, 57, 32].

To improve upon the naive plug-in (direct) estimator, debiased methods analyze the

sensitivity of the causal estimand with respect to the estimated nuisance parameter (e.g.

outcome model) by taking a first-order distributional Taylor expansion, and then correct

for the first-order error term due to nuisance parameter estimation [8, 37, 13, 57, 52, 35]. As

an example, one-step estimation corrects the plug-in estimator by subtracting an estimate

of the first-order error term; see [32, 21] for a review and an introduction to one-step cor-

rection. As another example, targeting “fluctuates” the outcome model in a specific way so

that an estimate of the first-order error is zero [57, 52]. When estimating the ATE, these two

approaches give rise to the well-known augmented inverse probability weighting (AIPW)

estimator [5] and the targeted maximum likelihood estimator (TMLE) [57, 52], respectively.

Both estimators are statistically efficient/optimal (having the lowest possible asymptotic

variance, in the local asymptotic minimax sense [59]) and doubly robust (converging to the

true value if either the outcome model or treatment model converge to their true values [5]).

While all first-order correction (“debiased”) methods enjoy standard asymptotic opti-

mality guarantees under standard assumptions, in practice, several authors have noted a

salient gap between the asymptotic and finite-sample performance of different estimation

approaches [31, 11], leaving room for new methodological development, and necessitat-

ing a rigorous and thorough empirical comparison. AIPW and TMLE are asymptotically

optimal but can produce unstable estimates, and additional heuristics and assumptions

(e.g., truncating propensity scores for AIPW, or assuming bounded outcomes for TMLE)

are used to mitigate this instability. By contrast, plug-in estimators never require trunca-

tion but lose efficiency. In response, we offer a unified approach that combines statistical

efficiency with finite-sample stability, without additional heuristics.

Our framework reframes the problem of constructing a debiased ATE estimator as
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a constrained optimization problem. Consider binary treatments (actions) A, covariates

X, and potential outcomes Y (1), Y (0) under treatment (A = 1) and control (A = 0),

respectively. Under standard identification assumptions for the ATE, letting (X,A, Y :=

Y (A)) ∼ P for some distribution P , and also assuming Y (0) := 0 for simpler exposition,

the ATE depends on the outcome model µ(X) := EP [Y | A = 1, X]:

ATE = EP [Y (1)− Y (0)] = EP [Y (1)] = EP [µ(X)].

Instead of fitting µ(·) to minimize prediction error (as would be done for a standard plug-

in estimator), we explicitly take into account the downstream causal estimation task by

minimizing prediction error subject to the constraint that the first-order estimation error

must be zero. For a given propensity score (treatment) model π̂(X) ≈ E[A | X], we solve

the following constrained learning problem over the class of outcome models µ̃(·) in the

chosen model class F :

µ̂C ∈ argmin
µ̃∈F

{
PredictionError(µ̃) : First-order error of plug-in estimator from µ̃ is 0

}
.

(1)

The resulting plug-in estimator 1
n

∑n
i=1 µ̂

C(Xi) based on the constrained learning perspec-

tive (1) enjoys the usual fruits of first-order correction, such as semiparametric efficiency

and double robustness, which we show in Section 6.

The constrained learning perspective (1) gives rise to a natural and performant esti-

mation method, which we call the “C-Learner”. Instead of adjusting an existing nuisance

parameter estimate along a pre-specified direction to attain first-order correction (e.g., as

in TMLE), we directly train the nuisance parameter to minimize prediction error subject

to the constraint that the first-order estimation error must be zero. As we discuss in Sec-

tion 5, we empirically observe that the C-Learner outperforms basic versions of one-step

estimation and targeting without additional heuristics or approximations in challenging

settings where there are covariate regions with little estimated overlap between treatment

and control groups, where existing methods can exhibit instability. We observe C-Learner

performs similarly to these versions of one-step estimation and targeting otherwise.

How does the C-Learner attain stable estimates, while basic versions of one-step estima-
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tion and targeting are less stable in settings with low overlap? Inverse propensity weights

(i.e. the reciprocal of the probability of treatment) can be extreme in settings with low

overlap; basic versions of existing first-order correction methods are sensitive to extreme

inverse propensity weights, while C-Learner is less sensitive to extreme inverse propensity

weights as inverse propensity weights only appear in the constraint. The sensitivity of

existing methods to extreme inverse propensity scores is visible through their definitions

in Section 2.

Our constrained learning perspective also provides a way to unify versions of existing

first-order correction methods like one-step estimation and targeting (Section 3.1). These

versions of existing methods can be thought of as solving the optimization problem (1) with

a restrictive model class given by augmenting a fitted nuisance estimator along a specific

direction. For estimating the ATE, one version of one-step estimation uses an existing

outcome model µ̂(X) plus an additive constant term F := {µ̂(·)+ϵ : ϵ ∈ R}, and one version

of targeting uses an existing outcome model plus a canonical gradient-based covariate

term F :=
{
µ̂(·) + ϵ A

π̂(·) : ϵ ∈ R
}

where A is treatment and π̂ is a fitted propensity score

(treatment) model. See Figure 1 for an illustration. In Section 6, we identify conditions

under which a constrained learning estimator enjoys these results, and we verify that these

one-step estimation and targeting methods also satisfy these necessary conditions.

Unlike traditional one-step estimators and targeted estimators, which apply a first-order

correction to a single plug-in model, our C-Learner uses the entire chosen machine-learning

model class F to compute that correction. In other words, instead of fixing a plug-in

model and then adjusting it, we directly optimize over F , which we expect to yield better

finite-sample performance, which aligns with observations (Section 5). We implement the

C-Learner using outcome models µ̂ from linear models, and neural networks as described

in Section 4 and evaluate on datasets chosen to match these model classes.

Contributions To summarize, we contribute the following:

1. The C-Learner (Section 3), a general method to estimate causal estimands that uses

constrained optimization to attain asymptotic optimality (Section 6).

2. Practical instantiations of C-Learner for three different outcome model classes: linear
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Figure 1. Schematic for how C-Learner is defined, compared to one-step estimation and
targeting. µ̂ is the unconstrained outcome model, which minimizes the prediction error on
observed outcomes (gray ovals depict level sets for prediction error). µ̂one-step and µ̂targeting

are different projections of µ̂ onto the space of outcome models for which the correspond-
ing plug-in estimators are asymptotically optimal. µ̂C-Learner is the outcome model that
minimizes prediction error on observed outcomes, subject to the plug-in estimator being
asymptotically optimal (teal line).

models, gradient boosted trees, neural networks (Section 4).

3. Experiments using these three outcome model classes, on a range of settings, including

with text covariates, that show C-Learner performs better than one-step estimation

and targeting in settings with low overlap, and comparably otherwise (Section 5).

Related Works We defer a discussion of one-step estimation and targeting to Section 2.

We defer a discussion of balancing estimators, which also achieve asymptotic optimality

and have a connection to a “dual” version of C-Learner, to Section 3.3. Here, we discuss

related works outside of one-step estimation, targeting, and balancing estimators. Machine

learning approaches for nuisance estimation have received a lot of attention [1, 2, 3, 36,

25, 60]. These approaches can naturally be combined with first-order correction methods

like one-step estimation and targeting, with recent work [42, 15] incorporating these ideas

directly into model training through novel objectives and architectures. Like other first-

order correction methods, C-Learner is orthogonal to and can also integrate innovations

in nuisance estimation approaches; for example, in Section E.3.2, we demonstrate how

C-Learner can effectively use Riesz representers learned by RieszNet [15].
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2 Background

In the following, we illustrate the C-Learner in the context of the average treatment effect

(ATE). We discuss extensions to other estimands in Section A.

2.1 Average Treatment Effect and Missing Outcomes

Consider binary treatments (actions) A ∈ {0, 1}, covariates X ∈ Rd, and potential out-

comes Y (1), Y (0) ∈ R under treatment (A = 1) and control (A = 0), respectively. The key

difficulty in causal inference is that we do not observe counterfactuals: we only observe the

outcome Y := Y (A) corresponding to the observed binary treatment. Let Z := (X,A, Y ).

Based on i.i.d. observations Z ∼ P , our goal is to estimate the average treatment effect

ψ(P ) = P [Y (1) − Y (0)] :=
∫
[Y (1) − Y (0)]dP . Here P denotes both the joint probability

measure and the expectation operator under this measure. We require standard identifica-

tion conditions that make this goal feasible: (i) Y = Y (A) (SUTVA), (ii) (Y (1), Y (0)) ⊥
A | X (ignorability), and (iii) for some η > 0, η ≤ P (A = 1 | X) ≤ 1−η a.s. (overlap) [19].

To simplify our exposition, we assume Y (0) := 0 throughout so that we are estimating

the mean of a censored outcome (censored when A = 0). This setting is also known as

mean missing outcome [32], which is the focus of some of our experiments. In this case,

we can write the ATE as a functional of the joint measure P , as

ψ(P ) := P [Y (1)] = P [P [Y | A = 1, X]] . (2)

The outcome model µ(X) := P [Y | A = 1, X] (shorthand for µ(A,X) := P [Y | A,X]

with µ(0, X) := 0) and propensity (treatment) model π(X) := P (A = 1 | X) are key nui-

sance parameters; notably, they are high-dimensional in contrast to the single-dimensional

ATE (2). Note that we can write ψ(P ) = P [µ(1, X)− µ(0, X)] = P [µ(1, X)] = P [µ(X)] in

this setting. The corresponding nuisance estimators µ̂(X) and π̂(X) can be implemented

as ML models that are trained on held-out data.
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2.2 First-Order Correction and Asymptotic Optimality

By analyzing the error from blindly trusting an ML-based estimate of the nuisance pa-

rameters to estimate the ATE (2), we can develop better estimation methods. We sketch

intuition here and leave a more rigorous treatment to Section 6. We begin by noting that

the joint distribution over the observed data can be decomposed as P = PY,A|X × PX .

Since the marginal PX can be simply estimated with an empirical distribution (plug-in),

we focus on the error induced by approximating PY,A|X using an estimate P̂Y,A|X .

PX [µ̂(X)]− PX [µ(X)] = PX [P̂ [Y | A = 1, X]]− PX [P [Y | A = 1, X]]

= ψ(PX × P̂Y,A|X)− ψ(PX × PY,A|X).

For the statistical functional Q 7→ ψ(Q), let φ be its canonical gradient (a.k.a. effi-

cient influence function) with respect to QY,A|X ; without loss of generality, we require

Q[φ(Z;Q)|X] = 0 for all Q. Then, a (distributional) first-order Taylor expansion gives

ψ(PX × P̂Y,A|X)− ψ(PX × PY,A|X) =

∫∫
φ(Z; P̂ )d(P̂Y,A|X − PY,A|X)dPX +R2(P̂ , P )

= −
∫∫

φ(Z; P̂ )dPY,A|XdPX +R2(P̂ , P )

= −P [φ(Z; P̂ )] +R2(P̂ , P ) (3)

where R2 is a second-order remainder term. Conclude that the first-order error term of

the plug-in approach PX [µ̂(X)] is given by −P [φ(Z; P̂ )].
A common approach in semiparametric statistics to better estimate ψ(P ) is to explicitly

correct for this first-order error term. As we discuss later in Section 6, the first-order cor-

rection leads to asymptotic optimality properties like semiparametric efficiency—providing

the shortest possible confidence interval—and double robustness—achieving estimator con-

sistency even if only one of µ̂(X), π̂(X) is consistent.

For brevity of notation, for the rest of this section, we let φ denote a projected version

of the canonical gradient, where empirically correcting for this projected version produces

the same guarantees as empirically correcting for the full canonical gradient [57, 52].
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First-Order Correction for the ATE For the ATE (2), it is well-known that

φ(Z;P ) =
A

P [A = 1|X]
(Y − P [Y |A = 1, X]) =

A

π(X)
(Y − µ(X)) (4)

which in this work we do not derive. For an accessible primer on such derivations, see [32].

One-Step Estimation (Augmented Inverse Propensity Weighting, AIPW) [5]

One of the most prominent first-order correction approaches modifies the plug-in estimator

by moving the first-order error term to the left-hand side in the Taylor expansion (3). The

resulting estimator achieves second-order error rates:

P
[
µ̂(X) + φ(Z; P̂ )

]
− P [µ(X)] = R2(P̂ , P ).

Using the empirical distribution with samples Z1, . . . , ZN to approximate P in the one-step

debiased estimator, we arrive at the augmented inverse propensity weighted estimator

ψ̂AIPW :=
1

n

n∑
i=1

(
µ̂(Xi) + φ(Zi; P̂ )

)
=

1

n

n∑
i=1

µ̂(Xi) +
1

n

n∑
i=1

Ai

π̂(Xi)
(Yi − µ̂(Xi)). (5)

Targeting (Targeted Maximum Likelihood Estimation) [57, 52] Targeting takes

an alternative and more general approach to first-order correction. It commits to the use of

the plug-in estimator, and constructs a tailored adjustment (“fluctuation”) to the existing

nuisance parameter estimate to set the first-order error to zero, where the magnitude of

the adjustment is solved by maximizing likelihood (hence the name). The fluctuation takes

place in the direction of a task-specific random variable (“clever covariate”), which takes

different forms depending on the estimand. For illustrative purposes, in this discussion,

we use focus on a formulation of targeting for unbounded outcomes under the squared loss

function. In our experiments, we also include a commonly used variant of targeting that

increases the stability of the estimator by assuming bounded outcomes, and modeling the

outcomes with a logistic link. 1 We defer a deeper discussion of TMLE to Section F.

1The literature on targeting is large, with variants including regularization techniques and adaptive
versions [57, 54, 52, 56]. We choose to focus on the formulation in Equation (6) for its simplicity. See the
discussion on TMLE for bounded outcomes in Section 5.1, and Section F for additional discussion.
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In the case of the ATE with Y (0) := 0 (so that µ̂(X) := µ̂(1, X), as in Section 2.1)

and general outcomes Y (including unbounded continuous Y ), the form of the canonical

gradient (4) motivates the use of H(A,X) := A
π̂(X) as the clever covariate: targeting uses

an adjusted nuisance estimate µ̂(A,X) + ϵ⋆H(A,X) in place of µ̂(A,X) in the plug-in for

ψ(P ) = P [µ(1, X)], where ϵ⋆ is chosen to solve the targeted maximum likelihood problem

ϵ⋆ := argmin
ϵ∈R

1

n

n∑
i=1

Ai

(
Yi − µ̂(Ai, Xi)− ϵ

Ai

π̂(Xi)

)2

. (6)

From the KKT conditions, the solution removes the finite-sample estimate of the first-order

error term (3) of the plug-in estimator using µ̂(A,X) + ϵ⋆ A
π̂(X) . Solving for ϵ⋆, we obtain

ϵ⋆ =

(
1

n

n∑
i=1

Ai

π̂(Xi)2

)−1
1

n

n∑
i=1

Ai

π̂(Xi)
(Yi − µ̂(Xi)). (7)

Thus, we arrive at an explicit formula for the targeted maximum likelihood estimator

ψ̂TMLE :=
1

n

n∑
i=1

(
µ̂(1, Xi) + ϵ⋆H(1, Xi)

) 1
n

n∑
i=1

(
µ̂(Xi) + ϵ⋆

1

π̂(Xi)

)

=
1

n

n∑
i=1

µ̂(Xi) +

∑n
i=1

1
π̂(Xi)∑n

i=1
Ai

π̂(Xi)2

· 1
n

n∑
i=1

Ai

π̂(Xi)
(Yi − µ̂(Xi)). (8)

Targeted Regularization [15, 42] Instead of modifying the outcome model in the

direction of the clever covariate in a post-processing step (6), we can instead regularize the

usual training objective for the outcome model using a similar adjustment term throughout

training, an approach referred to as targeted regularization, where it is demonstrated on

e.g. neural networks learned via stochastic gradient-based optimization.2

2An additional difference between TMLE and targeted regularization is the data splits involved. In
TMLE, the targeting objective (6) for calculating ϵ∗ uses the same data that is used for plug-in estimation
(the first line in (8)), while in targeted regularization, the targeting objective is applied to the dataset used
for training µ̂, which has not explicitly described above, as so far, µ̂, π̂ are taken as given. These data splits
are often different; see Section 4.1 for more discussion on data splits.
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3 Constrained Learning Framework

The aforementioned approaches to first-order correction take the fitted nuisance estimate

as given, and make adjustments to either the estimator (one-step estimation (5)) or the

nuisance estimate (targeting (6)). In this section, we propose the constrained learning

framework to first-order correction where we train the nuisance parameter to be the best

nuisance estimator subject to the constraint that the first-order error term (3) is zero.

Our method, which we call the C-Learner, is a general method for adapting machine

learning models to explicitly consider the semiparametric nature of the downstream task

during training. For one-step estimation and targeting, in the sections before, we would

use a fitted outcome model µ̂ that minimizes the squared prediction loss (or equivalently

maximizes likelihood, assuming outcomes are Gaussian), with

µ̂ ∈ argmin
µ̃∈F

Ptrain[A(Y − µ̃(X))2], (9)

where the loss minimization is performed over an auxiliary training data split Ptrain which

may be separate from the main sample (Xi, Ai, Yi)
n
i=1 on which estimators are calculated.

Instead, the C-Learner solves the constrained optimization problem

µ̂C ∈ argmin
µ̃∈F

{
Ptrain[A(Y − µ̃(X))2] :

1

n

n∑
i=1

Ai

π̂(Xi)
(Yi − µ̃(Xi)) = 0

}
, (10)

ψ̂C-Learner :=
1

n

n∑
i=1

µ̂C(Xi) (11)

so that the constraint in Equation (10) is applied to the same data used in the plug-

in (11). Observe that the first-order error term being 0 is a sort of balancing constraint: it

forces the inverse propensity weighted plug-in 1
n

∑n
i=1Aiµ̂

C(Xi)/π̂(Xi) to equal the inverse

propensity weighted estimator 1
n

∑n
i=1AiYi/π̂(Xi) [19]. This constrained optimization is

done over model class F , which can be chosen to be suitable for the problem setting.

The constraint (10) ensures that the corresponding plug-in estimator (11) has a finite-

sample estimate of the first-order error term (3) of zero. The training objective for µ̂C thus

optimizes for the best outcome model fit using the training data, subject to the constraint

that the plug-in estimator is asymptotically optimal. In practice, there are several com-
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putational approaches to (approximately) solve the stochastic optimization problem (10)

depending on the function class F . In Section 4, we describe how to instantiate C-Learner

using linear models, gradient boosted regression trees, and neural networks. We empirically

demonstrate these in Section 5.

Like other first-order correction methods, the C-Learner can be implemented with cross-

fitting [13], in which models (nuisance parameters) are evaluated on data splits that are

separate from the data splits on which models are trained; we discuss data splitting further

in Section 4.1. By virtue of being debiased, the C-Learner enjoys the same asymptotic

properties as the AIPW and TMLE. See Section 6 for a formal treatment.

Theorem 1 (Informal). The cross-fitted version of ψ̂C-Learner is semiparametrically effi-

cient and doubly robust.

Although we illustrate the C-Learner in the ATE setting for simplicity, our approach gen-

eralizes to other estimands that are continuous linear functionals of outcome µ (Section A).

3.1 Relationship With Other Approaches to First-Order Debiasing

The constrained learning framework provides a unifying perspective to existing approaches

to first-order correction. First, a variant of AIPW (5) can also be thought of as a C-

Learner over a very restricted class F of outcome models. For a given trained out-

come model µ̂, consider the constrained optimization problem (10) over the model class

F := {µ̂(X) + ϵ : ϵ ∈ R}. In order to satisfy the constraint (10), we must have ϵ∗ =(
1
n

∑n
i=1

Ai
π̂(Xi)

)−1
1
n

∑n
i=1

Ai
π̂(Xi)

(Yi− µ̂(Xi)), which gives this special case of the C-Learner,

ψ̂AIPW-SN =
1

n

n∑
i=1

(
µ̂(Xi) + ϵ⋆

)

=
1

n

n∑
i=1

µ̂(Xi) +

(
1

n

n∑
i=1

Ai

π̂(Xi)

)−1
1

n

n∑
i=1

Ai

π̂(Xi)
(Yi − µ̂(Xi)). (12)

We refer to this as a self-normalized AIPW. This is the same as the AIPW (5) aside from a

normalization term 1
n

∑n
i=1

Ai
π̂(Xi)

that has expectation 1 if we use the true propensity score

π instead of π̂. We observe empirically (Section 5) that the self-normalized AIPW (12),
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which can be thought of as a variant of AIPW motivated by our constrained optimization

perspective, enjoys better finite-sample performance than the standard AIPW (5).

For general outcome variables (including unbounded continuous outcome variables),

we show that a basic version of targeting (8) can be viewed as a C-Learner over a specific

function class. By inspection, the first-order condition in (6) is given by

1

n

n∑
i=1

Ai

π̂(Xi)

(
Yi − µ̂(Xi)− ϵ

Ai

π̂(Xi)

)
= 0. (13)

Thus, this version of targeting is a C-Learner where a pre-trained outcome model µ̂(A,X)

is perturbed along a specific direction to become µ̂C(A,X) := µ̂(A,X)+ϵ A
π̂(X) .

3 Reframing

the constrained optimization problem (10) with model class F :=
{
µ̂(X) + ϵ A

π̂(X) : ϵ ∈ R
}

thus provides a new way to view this basic version of targeting (8).

For clarity, we do not use “C-Learner” to refer to self-normalized AIPW (12) or to tar-

geting (6), even though they can be thought of as C-Learners over a restricted model class.

3.2 C-Learner is Numerically Stable, Without Additional Heuristics

The aforementioned approaches to first-order correction rely on adding estimated ratios

(A/π̂(X) for one-step estimation (5)) or fluctuating the outcome model µ̂ in a specific direc-

tion (along A/π̂(X) for targeting (6)) in order to de-bias plug-in estimators (Section 2.2). In

contrast, C-Learner achieves asymptotic optimality without using limited model classes F
as in one-step estimation and targeting (Section 3.1): it simply trains the nuisance param-

eter µ̂C(·) so the plug-in estimator 1
n

∑n
i=1 µ̂

C(Xi) satisfies the criterion for asymptotic op-

timality in the most direct way possible, while using the entirety of the chosen model class.

In settings with regions of low overlap between treatment and control, the probabil-

ity of treatment π̂(X) can be very close to 0 for some values of X, so that 1/π̂(X) can

be extremely large, causing numerical instability in one-step estimation and targeting.

While there are variations for both AIPW and TMLE that are more stable, e.g., by self-

normalizing propensity weights, truncating π̂ to avoid extreme values in AIPW, or assuming

Y is bounded and modeling Y as a (scaled) logistic function of (A,X) in TMLE (see Sec-

3Recall that for simplicity, we assume Y (0) := 0.
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tion 5.1), C-Learner can avoid instability simply by having this 1/π̂(X) appear only in the

constraint in the constrained optimization, rather than an additive term to the estimator.

Additionally, simple plug-in estimators of outcome models from their chosen model

classes have been observed to be numerically stable (e.g., [31]) and empirically, the C-

Learner appears to inherit these benefits (Section 5).

3.3 A “Dual” C-Learner and Connections to Covariate Balancing

The formulation of Equation (10) starts by fitting and fixing a propensity score π̂, and then

fitting a constrained outcome model µ̂C to maximize likelihood, subject to a constraint that

depends on π̂ to ensure efficiency of the direct plug-in estimator that uses µ̂C . One could

alternatively first fit an outcome model µ̂, and then fit a propensity model π̂C to maximize

likelihood, also subject to a constraint to ensure efficiency of the resulting estimator, which

we call the “dual” C-Learner:

π̂C ∈ argmin
π̃∈Fπ

{
Ptrain[π̃(X)A(1− π̃(X))1−A] :

1

n

n∑
i=1

(
1− Ai

π̃(Xi)

)
µ̂(Xi) = 0

}
,

ψ̂C-Learner-Dual :=
1

n

n∑
i=1

Ai

π̂C(Xi)
Yi. (14)

The constraint is chosen analogously to the constraint for the usual C-Learner, and we

show how such a constraint leads to semiparametric efficiency in Section D.1.

The rest of this paper focuses on the C-Learner in Equation (10), and we include the

dual C-Learner primarily to relate to existing literature. This “dual” C-Learner formula-

tion is connected to covariate balancing propensity scores (CBPS) [28]. Specifically, the

covariate balancing condition from [28] for estimating the ATE can be written as

E
[
Af(X)

π (X)
− (1−A) f(X)

1− π (X)

]
= 0 (15)

where f(X) can be any function ofX. For example, one practical choice could be f(X) = X

so that ensuring the condition in (15) results in balancing each covariate dimension.

As our paper focuses on the mean missing outcome setting (equivalent to the ATE with
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Y (0) = 0 for cleaner notation), we focus on a corresponding balancing condition, i.e. [44]

E
[(

1− A

π(X)

)
f(X)

]
= 0, (16)

again for any choice of f ; note that if (16) holds for both A and 1−A, i.e. that

E[f(X)] = E
[

A

π(X)
f(X)

]
and E[f(X)] = E

[
1−A

1− π(X)
f(X)

]
(17)

then (15) must also hold. A finite-sample counterpart of (16) can also be written [44] as

1

n

n∑
i=1

(
1− Ai

π̂(Xi)

)
f(X) = 0. (18)

Notably, this condition is exactly the constraint in Equation (14) when we take f to be µ̂.

CBPS can then be used to enforce this constraint if, for example, µ is linear in some basis

of functions {f1, . . . , fJ}, and balance is enforced for all elements in this basis. In this way,

covariate balancing can result in semiparametric efficiency.

Related works Tan [44] produces semiparametrically efficient IPW-based estimators,

similar to a “dual” C-Learner, but their methods are analogous to targeting, as they learn

an “extended” propensity score that is a parametric fluctuation from an initial propensity

score model, where the magnitude of the fluctuation is determined by maximizing likeli-

hood. Unlike targeting, their estimators have additional constraints to ensure boundedness

of their estimator, improved local efficiency (better variance for a given fixed estimated out-

come model; this is outside of the scope of our work), and double robustness. Their theo-

retical results focus on parametric nuisance models and notions of efficiency when certain

nuisance parameters are well-specified vs. not, unlike in our setting, but their estimators

also achieve the semiparametric efficiency bound.

Zhao [61] proposes a loss function to minimize for learning a nonparametric propensity

model, where the first-order conditions of the loss are the balancing conditions in CBPS.

They also show their corresponding inverse propensity weighted estimators are efficient,

but under different assumptions: Zhao [61] shows efficiency using a sieve approach with a

growing basis of functions to model the propensity score through a logistic link, while we

14



assume standard non-parametric rates of convergence for nuisance parameters.

4 Methodology

The constrained learning framework can be instantiated in many ways depending on the

function class F for outcome models. Concretely, we illustrate the versatility of the C-

Learner by presenting approximate solution methods to the constrained optimization prob-

lem (10) for linear models, gradient boosted regression trees, and deep neural networks.

We empirically demonstrate these instantiations in Section 5.4

4.1 Data Splitting

We recommend sample splitting, where we split the data so that nuisance estimators (e.g.

π̂, µ̂, µ̂C) are fitted on a training (auxiliary) fold and evaluated to form a causal estimator

on an evaluation (main) fold. Let Ptrain be the split on which nuisance parameters such

as the outcome model or the propensity score π̂(·) are trained, and let Pval be the split on

which we perform model selection on them. We use a separate split Peval to evaluate our

final causal estimators. Our constrained learning framework (10) can thus be rewritten as

ψ̂C-Learner := Peval

[
µ̂C(X)

]
where

µ̂C ∈ argmin
µ̃∈F

{
Ptrain[A(Y − µ̃(X))2] : Peval

[
A

π̂(X)
(Y − µ̃(X))

]
= 0

}
. (19)

For simplicity, we let Peval = Pval except where otherwise specified. Cross-fitting with K

folds [13] refers to the following sample splitting setup designed to utilize all of the data:

first, we split the data into K folds. Then, to evaluate on the kth fold in Peval[µ̂
C(X)],

we train nuisance parameters on all but the kth fold in the data. We repeat this for all

K folds and average the results, so that the final estimator utilizes model evaluations over

the entire dataset. This setup for C-Learner is treated more formally in Section 6.

4Other frameworks [34] exist for constructing constrained outcome models, but do not restrict outcome
models to F ; we exclude these from our analysis.
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4.2 Linear Models

When outcome models are linear functions of X, the constrained learning problem (19)

has an analytic solution. Using ·⃗ to denote stacked observations, define
Y⃗train

X⃗train

H⃗train

 :=


{Yi}i∈Itrain
{Xi}i∈Itrain{
Ai

π̂(Xi)

}
i∈Itrain

 and


Y⃗eval

X⃗eval

H⃗eval

 :=


{Yi}i∈Ieval
{Xi}i∈Ieval{
Ai

π̂(Xi)

}
i∈Ieval


where Itrain = {i ∈ train : Ai = 1} and Ieval = {i ∈ eval : Ai = 1} are indices with

observations in each data split. The constrained learning problem (19) can be rewritten as

θ̂C = argmin
θ

{
1

2
∥Y⃗train − X⃗trainθ∥2 : H⃗⊤

eval(Y⃗eval − X⃗evalθ)

}
.

The KKT conditions characterize the primal-dual optimum (θ̂C , λ̂)

θ̂C = (X⃗⊤
trainX⃗train)

−1X⃗⊤
train(Y⃗train+λ̂H⃗train) where λ̂ =

H⃗⊤
eval(Y⃗eval − Y⃗ols)

H⃗⊤
evalX⃗eval(X⃗

⊤
trainX⃗train)−1X⃗⊤

trainH⃗train

and Y⃗ols := X⃗⊤
train(X⃗

⊤
trainX⃗train)

−1X⃗⊤
trainY⃗train. Note that θ̂C is the OLS with respect to

the pseudo-label Y⃗train + λ̂H⃗train and the dual variable shifts the observed outcomes in the

direction of H⃗train similar to targeting (6), but with additional reweighting using covariates.

When using our framework restricted to linear function classes, we obtain a new estimator

that, to the best of our knowledge, cannot be recovered by existing methods. In Section 5.1,

we demonstrate that this new estimator improves upon existing methods.

4.3 Gradient Boosted Regression Trees

We consider outcome models that are gradient boosted regression trees. The gradient

boosting framework [22] iteratively estimates the functional gradient gj of the loss function

evaluated on the current function estimate µ̂j . For the standard MSE loss ℓ(µ;X,A, Y ) :=

A(Y − µ(X))2, we use weak learners in G (e.g., shallow decision trees) to compute

ĝj+1 ∈ argmin
g∈G

Ptrain[(A(gj(X,Y )− g(X))2] where gj(X,Y ; µ̂j) :=
∂

∂µ
ℓ(µ;X,Y )

∣∣∣
µ=µ̂j

.
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Algorithm 1 C-Learner with Gradient Boosted Regression Trees

1: Input: learning rate η, max trees J and K, µ̂0 := 0
2: for j = 0, 2, . . . , J − 1 do
3: Modify functional gradient gj = Y − µ̂j(X) to g̃j = gj + ϵ⋆j · A/π̂(X) where ϵ⋆j :=

Ptrain[(Y−µ̂j(X))·A/π̂(X)]
Ptrain[A/π̂(X)2]

as in (20)

4: Compute ĝj = argming∈G Ptrain[A(g̃j − g(X))2] and update µ̂j+1 = µ̂j − ηĝj
5: end for
6: for k = 0, 2, . . . ,K − 1 do

7: Compute gradient g̃k = ϵ⋆J+k ·A/π̂(X) where ϵ⋆J+k =
Peval[(Y−µ̂J+k(X))·A/π̂(X)]

Peval[A/π̂(X)2]

8: Compute ĝk = argming∈G Peval[A(g̃k − g(X))2] and update µ̂J+k+1 = µ̂J+k − ηĝk
9: end for

10: Return final outcome model µ̂CXGB := µ̂J+K

and set µ̂j+1 = µ̂j − ηĝj+1 for some step size η. As we assume Y := 0 in our setting, we let

µ(X), gj(X,Y ), and g(X,Y ) be shorthand for µ(A,X), gj(X,A, Y ), and g(X,A, Y ) when

setting A = 1, and we let µ(0, X), gj(0, X), g(0, X) = 0. The process repeats J times until

a maximum number of weak learners are fitted or an early stopping criterion is met.

Constrained Gradient Boosting We want to minimize the squared loss subject to the

constraint (10) and propose a two-stage procedure. First, we perform gradient boosting

where instead of the functional gradient of the loss gj , we use a modified version

g̃j := gj + ϵ⋆j ·
A

π̂(X)
where ϵ⋆j = argmin

ϵ

{
Ptrain

[
A

(
Y − µ̂j(X)− ϵ · A

π̂(X)

)2
]}

(20)

given by the targeting objective (6) applied to µ̂j on the dataset Ptrain. The modifica-

tion g̃j allows subsequent weak learners to be fit in a direction that reduces the loss and

makes the plug-in estimator closer to satisfying our constraint on Ptrain. To ensure the

constraint (19) is satisfied on Peval, the second stage fits weak learners to the gradient of

constraint violation below:

g̃k := ϵ⋆J+k ·
A

π̂(X)
where ϵ⋆J+k = argmin

ϵ

{
Peval

[
A

(
Y − µ̂J+k(X)− ϵ · A

π̂(X)

)2
]}

.
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We summarize the method above in pseudo-code in Algorithm 1, which we implement us-

ing the XGBoost package with custom objectives [12]. Hyperparameters for the first stage

(learning rate η, and other properties of the weak learners such as max tree depth) are

selected to have the lowest MSE loss on Pval. Other hyperparameters such as max number

of trees J and K, may be set on Pval, or alternatively, by early stopping, with evaluation

on different splits within Ptrain. These hyperparameters are re-used in the second stage.

4.4 Neural Networks

When outcome models are neural networks µ̂θ(x) with weights θ, we consider the usual

MSE loss with a Lagrangian regularizer for the constraint (19)

R(θ) = Ptrain

[
A(Y − µ̂θ(X))2

]
+ λ · Peval

[
A

π̂(X)
(Y − µ̂θ(X))

]2
.

We optimize the objective using stochastic gradient methods, where we take mini-batches of

the training set to approximate the gradient of the first term and take a full-batch gradient

on the evaluation set for the second term. At the end of every training epoch, the constraint

on Peval is enforced exactly by adjusting the constant bias term θbias in the neural network:

θbias ← θbias +

(
Peval

[
A

π̂(X)

])−1

Peval

[
A

π̂(X)
(Y − µ̂θ(X))

]
. (21)

We choose to stop training at the epoch that minimizes Pval

[
A(Y − µ̂θ(X))2

]
, the MSE loss

on the validation split. We consider two options for choosing hyperparameters (e.g. learn-

ing rate, λ). The first option is to minimize MSE on Pval. Second, since a small bias shift

indicates a regularizer that is successful, we choose among hyperparameters with reasonable

MSE loss on Pval the one that minimizes the size of the bias shift (21) in the first epoch.

While the first method is more standard, the second encourages satisfying the constraint

over the course of training, to avoid big jumps in optimization. Model selection for nuisance

parameters is an active area of research [25, 39, 41]; we explore these in Section 5.2.
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5 Experiments

In this section, we present a series of experiments to demonstrate how C-Learner5 is flexible

across data types and model classes. We also show that C-Learner achieves good empir-

ical performance among all these settings, especially variants with low overlap. First, in

Section 5.1, we consider well-studied tabular simulated settings where existing debiasing

methods (e.g. AIPW) are known to perform poorly [31, 38]. Surprisingly, C-Learner is the

only debiased method that performs comparably with the naive plug-in estimator, without

additional heuristics or assumptions. We show that the same holds for a more flexible

function class using gradient-boosted trees for the outcome models. We also show that the

dual C-Learner (Section 3.3) performs at least as well as covariate balancing methods.

To test the scalability of our approach, in Section 5.2 we construct and study a high-

dimensional setting with text features, where we fine-tune a language model [40] under our

constrained learning framework. Again, we observe that C-Learner outperforms one-step

estimation and targeting, especially in settings with low overlap. We summarize the results

of our experiments in the above two settings in Figure 2.

Lastly, in Section E.3, we study a common tabular dataset (Infant Health and Develop-

ment Program [10]), where the C-Learner is implemented with gradient boosted regression

trees matches the performance of one-step estimation and targeting.

5.1 Tabular Dataset from Kang and Schafer [31]

We start with the synthetic tabular setting constructed by Kang and Schafer [31], who

demonstrate empirically that the direct method (a naive plug-in estimator with a linear

outcome model, labeled as “OLS” in [31]) achieves better performance than asymptotically

optimal methods in their setting. Robins et al. [38] note that settings in which some

subpopulations have a much higher probability of being treated than others, like in Kang

and Schafer [31], are very challenging for existing asymptotically optimal methods. Thus,

we evaluate the C-Learner on this well-known and challenging setting.

Our goal is to estimate ψ(P ) := P [Y (1)] = P [P [Y |A = 1]] = P [µ(X)] from data

5Here we use “C-Learner” to refer to estimators using solutions to the constrained optimization problem
in Section 3 for a chosen model class, even though other methods can also be thought of as C-Learners, as
discussed in Section 3.1.
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Figure 2. Comparison of mean absolute error of various estimators, in two types of settings
(tabular covariates in the top row with sample sizes of N = 200 from Section 5.1, and
text covariates in the bottom row with sample sizes of N = 2000 from Section 5.2), and
with settings with a range of difficulty (more overlap in the left columns, less overlap in
the right columns). Error bars represent ±1 standard error, over 1000 and 100 dataset
draws for tabular and text settings, respectively. C-Learner performs well, even in settings
with low overlap. “Direct” refers to the naive plug-in estimator of the best fit outcome
model 1

n

∑n
i=1 µ̂(Xi), “IPW” refers to inverse propensity score weighting, “AIPW” refers to

the augmented IPW, “TMLE” refers to targeted maximum likelihood estimation. AIPW,
TMLE, and C-Learner are asymptotically optimal.

(X,A,AY ) (assuming Y (0) := 0). The true outcome and treatment mechanisms depend on

covariates ξ ∼ N(0, I) ∈ R4 and ε ∼ N(0, 1) via Y = 210+27.4ξ1+13.7ξ2+13.7ξ3+13.7ξ4+ε

and π(ξ) = exp(−ξ1+0.5ξ2−0.25ξ3−0.1ξ4)
1+exp(−ξ1+0.5ξ2−0.25ξ3−0.1ξ4)

. Here, P [Y (1)] = P [Y | A = 1] = 200 and P [Y ] =

210 so that a naive average of the treated units is biased by −10. For a random sample

of 100 data points, the true propensity score can be as low as 1% and as high as 95%.

We focus on the misspecified setting, where instead of observing ξ, the modeler observes

X1 = exp(ξ1/2), X2 = ξ2/(1 + exp(ξ1)) + 10, X3 = (ξ1ξ3/25+ 0.6)3, X4 = (ξ2 + ξ4 +20)2.

Next, we demonstrate the instantiations of the C-Learner with two model classes: linear

models and gradient boosted regression trees.
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(a) N = 200

Method Bias Mean Abs Err

Direct -0.00 (0.10) 2.60 (0.06)
IPW 22.10 (2.58) 27.28 (2.53)
IPW-SN 3.36 (0.29) 5.42 (0.26)

AIPW -5.08 (0.474) 6.16 (0.46)
AIPW-SN -3.65 (0.20) 4.73 (0.18)
TMLE -111.59 (41.07) 112.15 (41.07)
C-Learner -2.45 (0.12) 3.57 (0.09)

TMLE-L -2.06 (0.10) 3.10 (0.07)
C-Learner-L -0.792 (0.11) 2.89 (0.07)

(b) N = 1000

Bias Mean Abs Err

-0.43 (0.04) 1.17 (0.03)
105.46 (59.84) 105.67 (59.84)

6.83 (0.33) 7.02 (0.32)

-41.37 (24.82) 41.39 (24.82)
-8.35 (0.43) 8.37 (0.43)

-17.51 (3.49) 17.51 (3.49)
-4.40 (0.07) 4.42 (0.07)

-3.68 (0.06) 3.68 (0.05)
-1.89 (0.07) 2.27 (0.06)

Table 1. Comparison of estimators on misspecified Kang and Schafer [31] settings in 1000
tabular simulations, for linear outcome models (Section 5.1.1). Asymptotically optimal
methods are listed beneath the solid horizontal divider. Asymptotically optimal methods
that use a logistic link are below the dashed horizontal divider. We highlight the best-
performing asymptotically optimal method, not including the logistic link, in bold; we
highlight the best-performing asymptotically optimal method overall in bold-italic. Stan-
dard errors are displayed in parentheses to the right of the point estimate.

5.1.1 Linear Outcome Models

Linear outcome models are appealing due to their simplicity and interpretability, and are a

fundamental tool for both theorists and practitioners. Here, we fit a linear model µ̂(X) on

covariates X to predict the potential outcome Y . The outcome models we employ achieve

an R2 value close to 0.99, indicating a high degree of fit to the observed data. We also fit

logistic propensity score models π̂; the ROC is approximately 0.75, suggesting reasonable

classification performance. Following the original study by Kang and Schafer [31], we do not

distinguish between data splits; there is only one split (Ptrain = Pval = Peval in Section 4.1).

We present a comparison of ATE estimators that use µ̂, π̂ as described above in Table 1.

In this table, “Direct” refers to the plug-in with the outcome model trained as usual (“OLS”

in [31]), “IPW-SN” [31] refers to self-normalized IPW (a.k.a. Hajek estimator [19]), and

“AIPW-SN” refers to self-normalized AIPW (see Section 3.1). C-Learner performs best out

of asymptotically optimal methods (AIPW, AIPW-SN, TMLE, C-Learner) in this setting,

demonstrating strong numerical stability despite extreme inverse propensity weights. In

some cases, the C-Learner improves upon AIPW and TMLE by orders of magnitude.6

6The median absolute error is reported in [31]. Qualitative results are the same under this additional
metric, which we omit for easier exposition. In Section E.1.3, we show similar results for other metrics such
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Even when outcomes are not truly bounded (here they are Gaussian), it is common

to implement the TMLE via a logistic link for improved estimator stability. Therefore, in

addition to TMLE (8) with the squared loss, we also compare with the logistic formulation

of TMLE (“TMLE-L”) using the tmle R package [24]. To use the logistic link, one needs to

normalize the values of Y to be between zero and one, which requires an upper and lower

bound for Y . Even when Y is not actually bounded, such lower and upper bounds can be

roughly estimated from data. We can also formulate the C-Learner using the logistic link,

which we call “C-Learner-L”. We find that C-Learner-L improves upon TMLE-L as well,

demonstrating that C-Learner can be used in conjunction with other heuristics to improve

and stabilize estimates. Details of C-Learner with the logistic link are in Section E.

Numerical Instability and Common Ways To Mitigate ATE estimation methods

involving inverse propensity weights are known to be numerically unstable if the propensity

score π̂(X) is close to 0. One way to address this instability is through normalizing these

inverse propensity score weights. We find that self-normalized versions of IPW and AIPW

are more stable and have better performance than their original versions, e.g. in Table 1.

Another common heuristic to handle extreme estimated propensity scores is to truncate

π̂(X) for a chosen small η > 0 so that if π̂(X) < η, we redefine π̂(X) := η [19, 17]. As

dealing with extreme estimated propensity scores π̂(X) can be challenging, another option

is to avoid these difficult X with small π̂(X) entirely by adjusting the estimand to exclude

or down-weight values of X for which π̂(X) takes extreme values [18, 33]. We show in

Section E.1.3 that while AIPW and TMLE perform poorly using raw estimated propensity

scores π̂, both perform better after truncation. We emphasize that C-Learner outperforms

other asymptotically optimal methods in settings with low overlap, without needing to use

heuristics like normalization or truncation.

Lastly, additional assumptions, such as bounded outcomes, can be used to improve

estimator stability. We also compare with the logistic formulation of TMLE in Table 1.

as RMSE and median absolute error.
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Figure 3. Empirical density of fitted
propensity scores π̂, for modified Kang
and Schafer [31] settings with parame-
ter c ∈ {0.25, 1, 1.75}. Histograms across
1000 datasets with size 200 each.

Estimator Performance When Vary-

ing Overlap Between Treatment and

Control In order to understand how

quickly estimator performance deteriorates

in settings with low overlap, we compare

how estimators perform in different data

settings that vary by the degree of overlap

or variation in propensity scores by modify-

ing the treatment assignment. Specifically,

we scale the logit of the treatment mecha-

nism by a parameter c such that if c = 0, every observation has an equal chance of being

observed, while as c increases, treatment probabilities become more extreme (i.e. closer to

0 or 1). See Section E.1.2 for more details. In Figure 3, we display the empirical density

of the the fitted propensity scores for c ∈ {0.25, 1, 1.75}. The case in which c = 1 is pre-

cisely the original setting of Kang and Schafer [31]. In Figure 4, we plot in log scale the

mean absolute error of each estimator as a function of the scaling parameter c. The other

asymptotically optimal methods and IPW deteriorate quickly as the fitted propensities be-

come extreme, while the C-Learner deteriorates an order of magnitude slower. In Table 5

and Table 6 in Section E.1.2, we compute statistics for learned propensity scores π̂(X) for

various values of c, such as the minimum, maximum and standard deviation.

Robins et al. [38] noted that methods like the AIPW, for example, perform poorly in

the setting proposed by Kang and Schafer [31] due to high variability in propensity scores.

They thus suggest considering the flipped version of the task, in which we want to estimate

ψ̃(P ) := P [Y (0)] instead; there, propensity scores are not extreme, and asymptotically

optimal methods such as AIPW work well. Robins et al. [38] thus ask the following question

(rewritten to match our notation): “Can we find doubly robust estimators that, under the

authors’ chosen joint distribution for (X,A, (1−A)Y ), both perform almost as well as the

direct method for P [Y (1)] and yet perform better than the direct method for P [Y (0)]?”

We observe that the C-Learner is such an estimator, as it performs well for estimating both

P [Y (0)] and P [Y (1)]. See Table 10 in Section E.1.3 for P [Y (0)].
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Figure 4. Existing debiased methods (in teal) perform worse in settings with low overlap
(larger values of c), in contrast to the simple plug-in estimator (“direct”) and C-Learner.
Mean average error in the modified Kang and Schafer [31] setting (Section 5.1), for linear
outcome models, with different values of scaling parameter c. Results are averaged over
1000 dataset draws for each c, each with N = 200. Error bars are ±1 standard error. This
figure depicts the same information as the top row in Figure 2, but with more values of c.

5.1.2 The Dual C-Learner and Covariate Balancing.

Here, we include experiment results in this setting for the dual C-Learner and for balancing

methods for the propensity score, as introduced in Section 3.3. We now compare an alter-

native formulation of the C-Learner presented in Equation (14), in which we take the linear

outcome model (learned with no constraint) as fixed and we solve for the best propensity

model subject to the efficiency constraints for the propensity weighted estimator. Finally,

we use this learned propensity model for inverse propensity weighting to obtain the dual

C-Learner estimator. We present in Table 3 a comparison between the following propen-

sity weighted estimators: IPW, which would be analogous to a direct implementation,

IPW with the standard CBPS formulation that forces balancing across the covariates X,

a parametrically fluctuated model (“Param-Fluc”) based on [44], which is analogous to

the parametric fluctuation of TMLE, and the dual C-Learner (“C-Learner-Dual”) as just

described. We also include self-normalized versions of each method (denoted with “-SN”).

Implementation details are in Section E. For both sample sizes, the dual C-Learner is the

best-performing propensity-weighted estimator. See Section E.1.3 for additional results

that use covariate-balanced propensity scores.
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(a) N = 200

Method Bias Mean Abs Err

Direct -5.12 (0.10) 5.30 (0.09)
IPW 1192 (919) 1206 (919)
IPW-SN -1.01 (0.10) 7.29 (0.33)
Lagrangian -4.44 (0.10) 3.57 (0.09)

AIPW 275 (215) 280 (215)
AIPW-SN -0.82 (0.24) 4.53 (0.19)
TMLE 487 (345) 10927 (493)
C-Learner -2.89 (0.10) 3.53 (0.07)

(b) N = 1000

Bias Mean Abs Err

-3.48 (0.04) 3.49 (0.04)
28.3 (3.23) 32.30 (3.23)
2.26 (0.29) 4.85 (0.26)
-2.29 (0.04) 2.34 (0.05)

2.28 (0.52) 4.58 (0.51)
0.36 (0.14) 2.74 (0.15)
17.3 (10.20) 20.05 (10.23)
-1.92 (0.04) 2.03 (0.04)

Table 2. Comparison of estimators on misspecified Kang and Schafer [31] settings, in 1000
tabular simulations, for gradient boosted regression tree outcome models (Section 5.1.3).
Asymptotically optimal methods are listed beneath the horizontal divider. We highlight
the best-performing asymptotically optimal method in bold. Standard errors are displayed
in parentheses to the right of the point estimate.

5.1.3 Gradient Boosted Regression Tree Outcome Models.

We now demonstrate the flexibility of the C-Learner by using gradient boosted regression

trees as outlined in Section 4.3. As before, the propensity model π̂ is fit as a logistic

regression on covariates X. Since sample splitting is more appropriate for this flexible

model class, we use cross-fitting with K = 2 folds as we describe in Section 4.1, and

treat more formally in Section 6. Additional implementation details, such as the grid of

hyperparameters for tuning and coverage results are deferred to Section E.1.1.

The results for the mean absolute error and their respective standard errors are dis-

played in Table 2. The C-Learner outperforms the direct method and achieves the best

mean absolute error (MAE) among all estimators and across all sample sizes. For com-

parison, we also include a plug-in method where the outcome model is learned using only

the first stage in Section 4.3. Note that the first stage by itself does not aim to make the

estimate of the first-order error term zero, so that the resulting estimator is not asymp-

totically optimal. In the results in Table 2 this is labeled as “Lagrangian”, as it can be

seen as a Lagrangian relaxation of the C-Learner framework. Especially for small sample

sizes (e.g. N = 200), the IPW, AIPW, and TMLE estimators perform very poorly, likely

due to being sensitive to extreme propensity weights. Self-normalization for both IPW

(“IPW-SN”) and AIPW (“AIPW-SN”) is crucial in these settings.
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(a) N = 200

Method Bias Mean Abs Err

IPW 22.10 (2.58) 27.28 (2.53)
IPW-SN 3.36 (0.29) 5.42 (0.26)
CBPS 1.98 (0.18) 4.30 (0.13)
CBPS-SN -1.20 (0.10) 2.76 (0.06)
Param-Fluc -2.77 (0.13) 3.61 (0.11)
Param-Fluc-SN -1.81 (0.10) 2.79 (0.07)
C-Learner-Dual -0.01 (0.10) 2.59 (0.06)
C-Learner-Dual-SN -9.20 (0.11) 9.22 (0.11)

(b) N = 1000

Bias Mean Abs Err

-0.43 (0.04) 1.17 (0.03)
105.46 (59.84) 105.67 (59.84)
-1.85 (0.07) 2.36 (0.06)
-1.35 (0.04) 1.59 (0.04)
-1.74 (0.04) 1.85 (0.04)
-1.72 (0.04) 1.83 (0.04)
-0.41 (0.04) 1.16 (0.03)
-9.49 (0.05) 9.49 (0.05)

Table 3. Comparison of estimator performance on mispecified datasets from Kang and
Schafer [31] in 1000 tabular simulations, for linear logit propensity models (Section 5.1.2).
We highlight the best-performing method overall in bold. Standard errors are displayed
within parentheses to the right of the point estimate.

In Table 9 in Section E.1.3, we present results when truncating π̂(X) at arbitrary

thresholds of of 0.1% and 5%. There, C-Learner again performs better (truncating at 0.1%)

or similarly to TMLE and AIPW-SN (truncating at 5%), and better than other methods.

5.2 CivilComments Dataset and Neural Network Language Models

Neural networks can learn good feature representations for image and text data. We

construct a new semisynthetic causal inference dataset using text covariates.

Setting Content moderation is a fundamental problem for maintaining the integrity of

social media platforms. We consider a setting in which we wish to measure the average

level of toxicity across all user comments. It is infeasible to have human experts label all

comments for toxicity, and the comments that get flagged for human labeling may be a

biased sample. This is a mean missing outcome problem (Section 2.1).

We use the CivilComments dataset [16], which contains real-world online comments and

corresponding human-labeled toxicity scores. The dataset contains toxicity labels Y (1) for

all comments X (which provides a ground truth to compare to), and we construct the

labeling (treatment) mechanism A ∈ {0, 1} to induce selection bias. Specifically, whether

the toxicity label for a comment can be observed is drawn as A ∼ Bernoulli(g(X)) where

g(X) = clip(b(X), l, u) and clip(y, l, u) is max(l, y) if y ≤ l, and min(u, y) if y > u. We

set u = 0.9 and l = 10−4. A lower l implies more extreme π(X) (and thus also π̂(X)), i.e.

26



Method Bias Mean Abs Err

Direct 0.173 (0.008) 0.177 (0.007)
IPW 0.504 (0.084) 0.546 (0.081)
IPW-SN 0.114 (0.017) 0.153 (0.014)

AIPW 0.084 (0.043) 0.307 (0.032)
AIPW-SN 0.116 (0.018) 0.161 (0.014)
TMLE -1.264 (1.361) 1.802 (1.355)
C-Learner (best val MSE) 0.103 (0.015) 0.141 (0.011)
C-Learner (smallest bias shift) 0.075 (0.012) 0.115 (0.008)

Table 4. Comparison of estimators in the CivilComments [16] semi-synthetic dataset (Sec-
tion 5.2) over 100 re-drawn datasets, with l = 10−4. Asymptotically optimal methods are
listed beneath the horizontal divider. We highlight the best-performing method in bold. Es-
timators (besides the “smallest bias shift” C-Learner) are analogous to those in Section 5.1.
Standard errors are displayed within parentheses to the right of the point estimate.

less overlap. Here, b(X) ∈ [0, 1] is a continuous measure of whether comment X relates

to the demographic identity “Black”, from the dataset. The labeled data suffers from

the following selection bias: within this dataset, comments mentioning the demographic

identity “Black” tend to be labeled as more toxic, compared to ones that don’t, so a naive

average of toxicity over labeled units would overestimate the overall toxicity. From a causal

perspective, we have induced confounding, can be handled by ATE estimators.

Procedure We demonstrate C-Learner with neural networks. To learn π̂, µ̂, and µ̂C , we

fine-tune a pre-trained DistilBERT model [40] with a linear head using stochastic gradient

descent, with µ̂C learned using the procedure described in Section 4.4. We train µ̂ using

squared loss on labeled units, and propensity models π̂ using the logistic loss. We fit

nuisance estimators on 100 re-drawn datasets of size 2000 each, from the full dataset of

size 405,130. On each dataset draw, we use cross-fitting, as described in Section 6, with

K = 2 folds, for all estimators. We consider two ways of picking hyperparameters (λ and

learning rate), as described in Section 4.4: one in which we choose hyperparameters for the

best mean squared error on validation data, and one in which we choose hyperparameters

that minimize the size of the bias shift. Additional details are in Section E.2.1.

Results In Table 4 (a low overlap setting with l = 10−4), both variants of C-Learner In

Section E.2.2 we also investigate settings with both low and high overlap (l = 10−2, 10−3, 10−4).

We observe C-Learner performs better compared to other asymptotically optimal meth-

ods in datasets with low overlap, and more comparably to other asymptotically optimal
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methods with higher overlap. We also display a subset of these results in the second row

of Figure 2, with λ chosen to have the best validation MSE.

These results with text covariates echo our tabular results (Section 5.1), suggesting

C-Learner’s superior performance in low-overlap extends to more complex settings.

6 Asymptotic Properties

We identify conditions under which the C-Learner is semiparametrically efficient and dou-

bly robust. In particular, our theoretical treatment also shows the asymptotic optimality

of one-step estimation (self-normalized AIPW) and targeting (TMLE with unbounded real

outcomes) since they are also C-Learners satisfying the requisite conditions.

The proof techniques here are common across those used for other first-order de-biasing

methods [52, 55, 51, 48, 32] as we share the goal of setting the first-order error term in the

distributional Taylor expansion to zero, and also showing second-order terms are negligible.

We focus on the cross-fitted [54, 13] formulation of the C-Learner where we split the

data so that nuisance estimators are fitted on a training (auxiliary) fold and evaluated to

form a causal estimator on an evaluation (main) fold. Divide the dataset of size n into

K disjoint cross-fitting splits. Assuming K evenly divides n for simplicity, let Pk,n be the

empirical measure over data from the k-th folds, and P−k,n be the empirical measure over

data from all other folds. For each k = 1, . . . ,K, on the training fold P−k,n, we train

a propensity score model π̂−k,n(x) to estimate P [A | X = x]. The C-Learner optimizes

the prediction loss evaluated under P−k,n, subject to the first-order correction constraint

evaluated on the evaluation fold Pk,n, with final estimator ψ̂C
n :

µ̂C−k,n ∈ argmin
µ̃∈F

{
P−k,n[A(Y − µ̃(X))2] : Pk,n

[
A

π̂−k,n(X)
(Y − µ̃(X))

]
= 0

}
(22)

ψ̂C
n :=

1

K

K∑
k=1

Pk,n[µ̂
C
−k,n(X)]. (23)

Using notation from Section 4.1, for fold k, let Ptrain = P−k,n, and Pval = Peval = Pk,n.

In addition to its practical benefits, cross-fitting simplifies the proof of asymptotic op-

timality, especially when nuisance parameter models can be large and complex. When
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nuisance model classes are Donsker—converging at
√
n-rates—asymptotic optimality can

be shown without explicit sample splitting [32, 46, 59]. In contrast to standard cross-

fitting, in which nuisance parameters are learned only on the training split P−k,n, the con-

straint (22) is over Pk,n. We shortly identify sufficient conditions that guarantee asymptotic

optimality (Assumption D), in addition to standard conditions on the nuisance parameters

π̂−k,n, µ̂
C
−k,n (Assumption A, Assumption B) and on outcomes (Assumption C).

Assumption A (Overlap). For some η > 0 and for all k, n, we have

η ≤ π(X) ≤ 1− η, η ≤ π̂−k,n(X) ≤ 1− η a.s.

Assumption B (Convergence rates of propensity and constrained outcome models). For

all k ∈ {1, . . . ,K}, both π̂, µ̂C are consistent,

∥π̂−k,n − π∥L2(P ) = oP (1), ∥µ̂C−k,n − µ∥L2(P ) = oP (1)

and also ∥π̂−k,n − π∥L2(P ) · ∥µ̂C−k,n − µ∥L2(P ) = oP (n
− 1

2 ).

As we discuss below, we can relax these assumptions when guaranteeing double robust-

ness (consistency under misspecified nuisance parameters). As is typical, we assume that

outcomes do not differ too much from their means, conditional on covariates.

Assumption C (Outcomes are close to conditional means). For all k, n, and for some

0 < B <∞,

∥A(Y − P [Y | X])∥L2(P ) = ∥A(Y − µ(X))∥L2(P ) ≤ B.

We also require the following condition (Assumption D) on the C-Learner outcome

model. This condition is new to our setting, and warrants discussion.

Assumption D (Empirical process assumption).

(Pk,n − P )(µ̂C−k,n(X)− µ(X)) = oP (n
−1/2).

In Section 3.1, we showed how versions of one-step estimation and targeting can also be

considered C-Learners. We show in Section B.4 and Section B.5 that cross-fitted versions
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of the self-normalized AIPW and TMLE for continuous and unbounded outcomes, under

standard assumptions on π̂−k,n, µ̂−k,n (with µ̂−k,n the usual outcome model learned using

Equation (9)) also satisfy Assumption D. Thus, C-Learner results in Theorems 2, 3 (to

come) apply directly to these estimators. One future research direction is to understand

the model classes and constrained optimization methods for which this assumption holds.

Assumption D is not implied by previous assumptions. Consider the following example:

Example 1 (Assumption D does not follow from Assumptions A, B, C): Assume Assump-

tion A. Let µ̂−k,n be an unconstrained solution to µ̂−k,n ∈ argminµ̃∈F P−k,n[A(Y − µ̃(X))2],

in contrast txo the constrained problem in (22). Then, define µ̂C−k,n(x) = µ̂−k,n(x) +∑n/K
i=1 1 {x = xi}, with the sum of indicators over elements in the Pk,n fold. Then

P
∣∣µ̂C−k,n(X)− µ̂−k,n(X)

∣∣ = 0 and Pk,n

(
µ̂C−k,n(X)− µ̂−k,n(X)

)
= 1. (24)

We make the following additional assumptions for this example. We also assume that

∥µ̂−k,n(X)−µ(X)∥ = oP (1) (analogous to Assumption B). Let µ̂ denote argminµ̃∈F P [A(Y−
µ̃(X))2], the best fitted model over the entire population. For simplicity, assume that Y is

bounded to satisfy Assumption C, and that µ̂(X) is bounded as well. Then

(Pk,n − P )
(
µ̂C−k,n(X)− µ(X)

)
= (Pk,n − P )

(
µ̂C−k,n(X)− µ̂−k,n(X)

)
+ (Pk,n − P ) (µ̂−k,n(X)− µ̂(X))

+ (Pk,n − P ) (µ̂(X)− µ(X))

where the first term on the RHS is 1 from (24), the second is oP (1) by the cross-fitting

lemma (Lemma 1 in Section B.3), and the third is oP (1) by Chebyshev. Therefore,

(Pk,n − P )
(
µ̂C−k,n(X)− µ(X)

)
= 1 + oP (1)

so that Assumption D does not hold for this example, while Assumptions A, B, C do. ⋄

The C-Learner (23) enjoys the following asymptotics; see Section B.1 for the proof.

Theorem 2 (Asymptotic variance of C-Learner). Under Assumptions A, B, C, and D,

√
n(ψ̂C

n − ψ(P ))
d
⇝ N(0, σ2) where σ2 := VarP

(
A

π(X)
(Y − µ(X)) + µ(X)

)
.
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Since σ2 is the semiparametric efficiency bound for the ATE estimand [45, 32], the C-

Learner (23) achieves the tightest confident interval and is optimal in the usual local

asymptotic minimax sense [59, Theorem 25.21].

Double robustness By virtue of their first-order correction, standard approaches like

one-step estimation and targeting enjoy double robustness: if either of the propensity model

or the outcome model is consistent, then the resulting estimator is consistent. We show a

similar guarantee for the C-Learner. Here, we assume that either π̂−k,n µ̂
C
−k,n is consistent.

Assumption E (At least one of π̂, µ̂C is consistent). For all k, the product of the errors

for the outcome and propensity models decays as

∥π̂−k,n − π∥L2(P ) · ∥µ̂C−k,n − µ∥L2(P ) = oP (1).

Using Assumption E in place of Assumption B, we arrive at the following result; see

Section B.2 for the proof.

Theorem 3 (C-Learner is doubly robust). The C-Learner (23) is consistent under As-

sumptions A, C, D, and E.

“Dual” C-Learner The results in Theorem 2 and Theorem 3 are extended to the “Dual”

C-Learner as defined in Equation (14), and are stated and proved in Section D.

7 Discussion

We introduce a constrained learning framework for first-order debiasing in causal estimation

and semiparametric inference. We pose asymptotically optimal plug-in estimators as those

whose nuisance parameters are solutions to a optimization problem, under the constraint

that the first-order error of the plug-in estimator with respect to the nuisance parameter es-

timate is zero. This perspective encompasses versions of one-step estimation and targeting.

The constrained learning perspective enables a new method (Constrained Learner,

a.k.a. C-Learner), which solves this constrained optimization directly while using the entire

model class. It outperforms existing asymptotically optimal methods without additional
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heuristics or assumptions in settings with low overlap, and performs similarly otherwise.

We demonstrate C-Learner’s versatility by instantiating it with model classes including

linear models, gradient boosted trees, and neural networks, and on datasets with both

tabular and text covariates.

Our theoretical analysis is only a small initial step in building a principled understand-

ing of the benefits of the constrained learning framework. One future direction is to inves-

tigate which model classes and optimization methods satisfy our theoretical assumptions

(e.g. Assumption D). Finally, we hope this work spurs further investigation on how con-

strained optimization can enable more robust estimators, by proposing better optimization

procedures, or extending to additional model classes and estimands beyond Section A.
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A Extending C-Learner to Other Estimands

We briefly sketch how the C-Learner can be extended to other estimands, beyond just the

ATE with Y (0) = 0 as in Section 2.1. Let Z := (W,Y ) ∼ P and let the target functional

ψ(P ) be continuous and linear in µ(W ) = P (Y | W ), the conditional distribution of Y

given W . For example, we let W = (X,A) in the ATE setting. For other functionals that

admit a distributional Taylor expansion with canonical gradient with respect to PY,W |X ,

φ(Z), then we can similarly formulate the C-Learner again as learning the best µ̂, subject

to the constraint that the estimate of the first-order error term is 0.

When ψ(P ) is continuous and linear in µ, by the Riesz representation theorem, if ψ(P )

is L2(P )-continuous in µ (see for example Equation (4.4) from [35]), then there exists

a ∈ L2(P ) such that for all µ ∈ L2(P ),

ψ(P ) = P [a(W )µ(W )].

This a(·) is commonly referred to as the Riesz representer [14], and the corresponding ran-

dom variable a(W ) can be referred to as the clever covariate [57]. These linear functionals

satisfy the following mixed bias property:

ψ(P̂ )− ψ(P ) + P [â(W )(Y − µ̂(W ))] = P [(â(W )− a(W ))(µ̂(W )− µ(W ))],

where the first-order term in the distributional Taylor expansion as discussed in Section 2.2

is given by P [â(W )(Y − µ̂(W ))]. We refer the reader to [14] or Proposition 4 of [35] for

a discussion about this mixed bias property. Therefore, the C-Learner can be formulated

more generally as

µ̂C ∈ argmin
µ̃∈F

{Ptrain[ℓ(W,Y ; µ̃)] : Peval[â(W )(Y − µ̃(W ))] = 0} ,

where ℓ is an appropriate loss function for the outcome model.

Below, we provide several specific examples demonstrating how C-Learner could be

adapted to various target functionals when W = (X,A).
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Average Treatment Effect We have seen the mean missing outcome setting (10) for

estimating the target functional ψ(P ) = P [µ(X)] where µ(x) := P [Y | A = 1, X = x]. The

loss function is ℓ(W,Y ; µ̂) = A(Y − µ̂(X))2. The Riesz representer is a(X,A) = A/π(X).

If we no longer assume that Y (0) = 0 and we are interested in estimating the standard

average treatment effect

ψ(P ) = P [Y (1)− Y (0)] = P [P [Y | A = 1, X]]− P [P [Y | A = 0, X]] ,

then the Riesz representer, constrained outcome model, and estimator are, respectively,

a(W ) =
A

π(X)
− 1−A

1− π(X)
,

µ̂C ∈ argmin
µ̃∈F

{
Ptrain[ℓ(X,A, Y ; µ̃)] : Peval

[(
A

π̂(X)
− 1−A

1− π̂(X)

)
(Y − µ̃(X,A))

]
= 0

}
,

ψ̂C-Learner := Peval

[
µ̂C(X, 1)− µ̂C(X, 0)

]
.

Average Policy Effect For off-policy evaluation, the goal is to optimize over assignment

policies c(X) ∈ {0, 1} to maximize the expected reward under the policy, using observa-

tional data collected under an unknown policy π(x) := P (A = 1 | X). Assume the usual

causal inference assumptions (SUTVA, ignorability, and overlap in Section 2.1). Fixing

c(X), the average policy effect is

ψ(P ) = P [c(X)Y (1) + (1− c(X))Y (0)]

= P [c(X)P [Y (1) | X] + (1− c(X))P [Y (0) | X]]

= P [c(X)P [Y | A = 1, X]] + (1− c(X))P [Y | A = 0, X]]

Here, the Riesz representer, constrained outcome model, and estimator are, respectively,

a(X,A) = c(X)
A

π(X)
+ (1− c(X))

1−A
1− π(X)

,

µ̂C ∈ argmin
µ̃∈F

{
Ptrain[ℓ(X,A, Y ; µ̃)] : Peval

(
c(X)

A

π(X)
+ (1− c(X))

1−A
1− π(X)

)
(Y − µ̃(X,A)) = 0

}
,
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ψ̂C-Learner := Peval

[
c(X)µ̂C(X, 1) + (1− c(X))µ̂C(X, 0)

]
.

B Proofs of Asymptotic Properties

Here, we prove results in Section 6. We show that C-Learner is semiparametrically efficient

(Section B.1) and doubly robust (Section B.2), under assumptions in Section 6. We also

show that versions of one-step estimation methods (self-normalized AIPW) and targeting

methods (TMLE with unbounded continuous outcomes) can satisfy these assumptions

(Section B.4, Section B.5), so that semiparametric efficiency and double robustness hold

for them immediately as well.

B.1 Proof of Theorem 2

Our proof follows a standard argument. We first use the distributional Taylor expan-

sion (55) to rewrite the estimation error ψ̂C
n − ψ as the sum of three terms. Then, we

address these terms one by one, and we will show how only one of these terms contributes

to asymptotic variance.

Let Z = (X,A, Y ) as defined in Section 2.1. Let P denote the true population dis-

tribution of Z. Let ψ(P ) = P [P [Y | X]] as in Section 2.1. Functionals ψ may admit a

distributional Taylor expansion, also known as a von Mises expansion [20], where for any

distributions P, P on Z, we can write

ψ(P )− ψ(P ) = −
∫
φ(z;P )dP (z) +R2(P , P ) (25)

where φ(z;P ) which can be thought of as a “gradient” satisfying the directional derivative

formula ∂
∂tψ(P + t(P − P )) |t=0=

∫
φ(z;P )d(P − P )(z). (W.l.o.g. we assume φ(z;P ) is

centered so that
∫
φ(z;P )dP (z) = 0.) Here, −

∫
φ(z;P )dP (z) is the first-order term, and

R2(P , P ) is the second-order remainder term, which only depends on products or squares

of differences between P, P .

When ψ is the ATE as in our setting, ψ admits such an expansion [27]

φ(Z;P ) :=
A

π(X)
(Y − µ(X)) + µ(X)− ψ(P ), (26)
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where π(x) := P [A = 1 | X] and µ(x) := P [Y | A = 1, X]. In particular, we get the

following explicit formula for the second-order term

R2(P , P ) :=

∫
π(x)

(
1

π(x)
− 1

π(x)

)
(µ(x)− µ(x)) dP (x). (27)

We will apply this to our C-Learner estimator as defined in Section 6. Recall that π̂−k,n is

trained to predict treatment A givenX using P−k,n, and µ̂
C
−k,n is trained to predict outcome

given X and A = 1 on P−k,n, under the constraint that Pk,n

[
A

π̂−k,n(X)(Y − µ̂
C
−k,n(X)

]
= 0.

Our C-Learner estimator is the mean of plug-in estimators across folds: for each fold, write

ψ̂C
k,n = ψ(P̂C

k,n) so the C-Learner estimate is the average ψ̂C
n = 1

K

∑K
k=1 ψ̂

C
k,n.

Noting that any distribution decomposes P = PX × PA|X × P Y |A,X and ψ(P ) =

PX [µ(X)], the following definitions

P̂C
X;k,n := PX;k,n

P̂C
A|X;k,n[A = 1 | X = x] := π̂−k,n(x)

P̂C
Y |A,X;k,n[Y | A = 1, X = x] := µ̂C−k,n(x)

provide a well-defined joint distribution P̂C
k,n.

For each data fold k, we use the distributional Taylor expansion above, where we replace

P with the joint distribution P̂C
k,n

ψ(P̂C
k,n)− ψ(P ) = −Pφ(Z; P̂C

k,n) +R2(P̂
C
k,n, P )

= (Pk,n − P )φ(Z;P )− Pk,nφ(Z; P̂
C
k,n)

+ (Pk,n − P )(φ(Z; P̂C
k,n)− φ(Z;P )) +R2(P̂

C
k,n, P ). (28)

Observe that by using Equation (56) and the definition of the C-Learner,

Pk,nφ(Z; P̂
C
k,n) = Pk,n

[
A

π̂−k,n(X)
(Y − µ̂C−k,n(X)) + µ̂C−k,n(X)− ψ(P̂C

k,n)

]
= Pk,n

[
A

π̂−k,n(X)
(Y − µ̂C−k,n(X))

]
︸ ︷︷ ︸

=0 by C-Learner constraint

+Pk,n[µ̂
C
−k,n]− Pk,n[µ̂

C
−k,n]︸ ︷︷ ︸

=0

= 0.
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Taking the average of Equation (58) over k = 1, . . . ,K, we can write the error ψ̂C
n − ψ as

the sum of three terms.

ψ̂C
n − ψ =

1

K

K∑
k=1

(Pk,n − P )φ(Z;P )︸ ︷︷ ︸
S∗
k

+
1

K

K∑
k=1

(Pk,n − P )
(
φ(Z; P̂C

k,n)− φ(Z;P )
)

︸ ︷︷ ︸
T1k

+
1

K

K∑
k=1

R2(P̂
C
k,n, P )︸ ︷︷ ︸
T2k

. (29)

Using the decomposition (59), we write

S∗ =
1

K

K∑
k=1

S∗
k , T1 =

1

K

K∑
k=1

T1k, T2 =
1

K

K∑
k=1

T2k, (30)

so that ψ̂C
n − ψ = S∗ + T1 + T2. We address the terms S∗, T1 and T2 separately. The first

term can be rewritten as

S∗ =
1

K

K∑
i=1

(Pk,n − P )φ(Z;P ) = (Pn − P )φ(Z;P )

so that by the central limit theorem,

√
nS∗ d
⇝ N (0,VarP (φ(Z;P ))) .

Observe that this quantity depends only on ψ and P , so that it cannot be made smaller

by choice of estimator. If the variance of an estimator for ψ is VarP (φ(Z;P )), then it is

semiparametrically efficient in the local asymptotic minimax sense (Theorem 25.21 of [59]).

Thus, it suffices to show that the rest of the terms, T1 and T2, are oP (n
−1/2), so that

√
n(ψ̂C

n − ψ) =
√
nS∗ + oP (1)

d
⇝ N (0,VarP (φ(Z;P ))) .

For a fixed k, |T1k| = oP (n
−1/2) by Assumption D so that |T1| = oP (n

−1/2) as desired. The

second-order remainder term in the distributional Taylor expansion (55) where we replace
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P with P̂C
k,n is

T2k =

∫
π(x)

(
1

π̂−k,n(x)
− 1

π(x)

)(
µ̂C−k,n(x)− µ(x)

)
dP (x).

Under the overlap assumption (Assumption A) and Cauchy-Schwarz,

|T2k| ≤
1

η

∫
|π̂−k,n(x)− π(x)|

∣∣µ̂C−k,n(x)− µ(x)
∣∣ dP (x)

≤ 1

η
∥π̂−k,n − π∥L2(P )

∥∥µ̂C−k,n − µ
∥∥
L2(P )

. (31)

By Assumption B, |T2k| = oP (n
−1/2) so that |T2| = oP (n

−1/2) as desired.

B.2 Proof of Theorem 3

We briefly sketch the proof as it is a minor modification of our previous proof in Section B.1.

To show the C-Learner estimator ψ̂C
n is consistent (rather than that our estimator has the

desired asymptotics) under Assumption E (rather than Assumption B), we again rewrite

the error ψ̂C
n − ψ as a sum of three terms and show each converges to 0 in probability:

• S∗: This term converges to 0 in probability.

• T2k: This also converges to 0 in probability by the same logic as before. Note we only

need this to be oP (1) and not oP (n
−1/2) as we would have required for efficiency.

• T1k: This converges to 0 in probability by Assumption D.

B.3 Showing Self-Normalized AIPW and TMLE Satisfy C-Learner Con-

ditions for Theorems 2 and 3

As self-normalized AIPW and TMLE involve simple adjustments to the unconstrained

outcome models, in this section, we state assumptions on the unconstrained outcome model

µ̂−k,n, fitted in the usual manner on the auxiliary fold P−k,n

µ̂−k,n ∈ argmin
µ̃∈F

P−k,n[A(Y − µ̃(X))2],
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and also assumptions on the gap between the constrained and unconstrained outcome

models. Also in this section, we show how these aforementioned assumptions satisfy the

C-Learner assumptions required for Theorems 2 and 3.

Then in the following sections, we show how self-normalized AIPW and TMLE satisfy

the assumptions stated in this section on the gap between the constrained and uncon-

strained outcome models.

Unconstrained Outcome Models The following assumption on unconstrained out-

come models is analogous to Assumption B. This assumption is standard.

Assumption F (Convergence rates of propensity and unconstrained outcome models).

For all k = 1, . . . ,K,

∥π̂−k,n − π∥L2(P ) = oP (n
− 1

4 ), ∥µ̂C−k,n − µ∥L2(P ) = oP (n
− 1

4 ).

Distance Between Constrained and Unconstrained Outcome Models These as-

sumptions essentially ensure that the first-order constraint (22) does not change the out-

come model too much asymptotically, i.e., µ̂C−k,n and µ̂−k,n are similar asymptotically. This

first constraint is used to show Assumption B:

Assumption G (The constraint is negligible asymptotically). For all k = 1, . . . , K,

∥µ̂C−k,n − µ̂−k,n∥L2(P ) = oP (n
−1/4).

Notably, the distance between the constrained solution µ̂C−k,n and its unconstrained

counterpart µ̂−k,n can be as large as that between µ̂−k,n and the true parameter µ, asymp-

totically.

This next assumption is used to show Assumption D:

Assumption H (Empirical process assumption on µ̂C−k,n vs µ̂−k,n).

(Pk,n − P )(µ̂C−k,n(X)− µ̂−k,n(X)) = oP (n
−1/2).

See Section C.1 for an example of why this assumption is necessary. Given these

assumptions, we show the C-Learner assumptions hold.
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Proposition 4 (C-Learner conditions hold, given assumptions on unconstrained outcome

models and the gap between constrained and unconstrained models).

Assume Assumptions A, C, F, and H. Then Assumptions A, C, B, D are satisfied.

To show this proposition, it suffices to show Assumptions B and D. We will show these

assumptions in the rest of this section.

Showing Assumption B By the triangle inequality,

∥µ̂C−k,n − µ∥L2(P ) ≤ ∥µ̂−k,n − µ∥L2(P ) + ∥µ̂C−k,n − µ̂−k,n∥L2(P ). (32)

Showing Assumption D Applying the triangle inequality again yields

|T1k| :=
∣∣∣(Pk,n − P )

(
φ(Z; P̂C

k,n)− φ(Z;P )
)∣∣∣

≤
∣∣∣(Pk,n − P )

(
φ(Z; P̂C

k,n)− φ(Z; P̂−k,n)
)∣∣∣+ ∣∣∣(Pk,n − P )

(
φ(Z; P̂−k,n)− φ(Z;P )

)∣∣∣
(33)

where P̂k,n is defined as

P̂X;k,n := PX;k,n

P̂A|X;k,n[A = 1 | X = x] := π̂−k,n(x)

P̂Y |A,X;k,n[Y | A = 1, X = x] := µ̂−k,n(x)

with π̂−k,n, µ̂−k,n as defined in Section 6, and P̂C
k,n is defined as in Section 6. The second

term in (33) is addressed using a standard argument for cross-fitting, as Pk,n and P̂−k,n

(and therefore φ(Z; P̂−k,n)) use disjoint data. In contrast, the first term is not handled by

standard cross-fitting arguments: P̂−k,n only uses data from all but the k-th fold, while

P̂C
k,n uses the k-th fold, except that µ̂C−k,n is made to satisfy a constraint that does use the

k-th fold, as described in Section 6. We begin by addressing the second term, which is

more standard.

Lemma 1 (Cross-fitting lemma). Let f̂(z) be a function estimated from an iid sample

ZN = (Zn+1, . . . , ZN ), and let Pn denote the empirical measure over (Z1, . . . , Zn), which
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is independent of ZN . Let f be the function estimated from the full distribution P . Then

(omitting arguments for brevity) (Pn − P ) (f̂ − f) has zero P -expectation, and P -variance

upper bounded by 1
n∥f̂ − f∥

2
L2(P ).

Proof First note that the conditional mean is 0, i.e. P
[
(Pn − P )(f̂ − f) | ZN

]
= 0 since

P
[
Pn(f̂ − f) | ZN

]
= P

(
f̂ − f | ZN

)
= P (f̂ − f).

The conditional variance is

VarP

{
(Pn − P ) (f̂ − f) | ZN

}
= VarP

{
Pn(f̂ − f) | ZN

}
=

1

n
VarP

(
f̂ − f | ZN

)
≤ 1

n
∥f̂ − f∥2L2(P ).

Then for (unconditional) mean and variance, P
[
(Pn − P )(f̂ − f)

]
= 0 and

VarP

{
(Pn − P )(f̂ − f)

}
= VarP

{
P
[
(Pn − P )(f̂ − f) | ZN

]}
+ P

[
VarP

{
(Pn − P )(f̂ − f) | ZN

}]
≤ 0 +

1

n
∥f̂ − f∥2L2(P ).

Now we show the second term in the RHS in Equation (33) is oP (n
−1/2). To do this, write

φ(Z;P ) =
A

π(X)
(Y − µ(X)) + µ(X)− ψ(P ) (34)

φ(Z; P̂−k,n) =
A

π̂−k,n(X)
(Y − µ̂−k,n(X)) + µ̂−k,n(X)− ψ(P̂−k,n). (35)

Observe that (Pk,n − P )ψ(P ) = (Pk,n − P )ψ(P̂−k,n) = 0 as ψ(P ), ψ(P̂−k,n) are constants.

Thus, it remains to show that for a fixed k, (Pk,n − P )(f̂k,n − f) = oP (n
−1/2), where we
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omit arguments for brevity and let

f̂k,n =
A

π̂−k,n
(Y − µ̂−k,n) + µ−k,n, (36)

f =
A

π
(Y − µ) + µ. (37)

We do this by using Lemma 1. Observe that

f̂k,n − f =

(
1 +

A

π

)
(µ− µ̂−k,n) +

A

π̂−k,n · π
(Y − µ̂−k,n)(π − π̂−k,n). (38)

Then using Assumption A,

∥f̂k,n − f∥L2(P ) ≤
(
1 +

1

η

)
∥µ̂−k,n − µ∥L2(P ) +

1

η2
∥A(Y − µ̂−k,n)∥L2(P )∥π − π̂−k,n∥L2(P ).

(39)

The leftmost term on the RHS converges to 0, using Assumption F. Note that we can

bound the rightmost term using the triangle inequality(
1 +

1

η2

)(
∥A(Y − µ)∥L2(P ) + ∥µ− µ̂−k,n∥L2(P )

)
∥π − π̂−k,n∥L2(P ), (40)

which also converges to 0 by Assumption F and Assumption C. Thus combining with

Lemma 1 we obtain that the second term on the RHS of Equation (33) is oP (n
−1/2), as

n1/2(Pk,n − P )(f̂k,n − f) has mean 0 and variance ≤ ∥f̂k,n − f∥L2(P ) which converges to 0

as n→∞.

Now we address the remaining term: we show the first term on the RHS of Equation (33)

is oP (n
−1/2). We use a similar argument to before: let f̂k,n be as before, and f̂Ck,n as below:

f̂k,n :=
A

π̂−k,n
(Y − µ̂−k,n) + µ̂−k,n (41)

f̂Ck,n :=
A

π̂−k,n
(Y − µ̂C−k,n) + µ̂C−k,n (42)

where we again omit the ψ(P̂C
−k,n), ψ(P̂−k,n) terms in φ(P̂C

k,n), φ(P̂k,n) from f̂Ck,n, f̂k,n above

as they are constants. We can’t use Lemma 1 since f̂Ck,n also uses Pk,n to fit, so instead, by
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using Assumptions A and then H,

(Pk,n − P )
(
φ(Z; P̂C

k,n)− φ(Z; P̂k,n)
)
= (Pk,n − P )

(
f̂Ck,n − f̂k,n

)
(43)

≤
(
1 +

1

η

)
(Pk,n − P )(µ̂C−k,n(X)− µ̂−k,n(X)) (44)

= oP (n
−1/2). (45)

B.4 Self-Normalized AIPW Satisfies Assumptions G and H

Recall that we showed how self-normalized AIPW also satisfies the C-Learner formulation

in Section 3.1. Here we show that Assumptions G and H hold for self-normalized AIPW,

so that Theorems 2 and 3 follow through Proposition 4.

As in the discussion in Section 3.1, self-normalized AIPW is equivalent to the specific

C-Learner µ̂C−k,n that is defined by adjusting µ̂−k,n by an additive constant:

µ̂C−k,n(x) = µ̂−k,n(x) + ck,n where ck,n :=
Pk,n

[
A

π̂−k,n(X)(Y − µ̂−k,n(X))
]

Pk,n

[
A

π̂−k,n(X)

] .

Showing Assumption G: Since µ̂C−k,n is just a constant offset from µ̂−k,n, it suffices to

show that ck,n = oP (n
−1/4), for a fixed k.

First, we address the denominator of ck,n. Let cdenk,n := Pk,n

[
A

π̂−k,n(X)

]
and we will

show 1/cdenk,n = OP (1). First note cdenk,n = Pk,n

[
A

π̂−k,n(X)

]
≥ Pk,n[A]. Then observe that

Pk,n[A]
p→ P [A], and that 1/Pk,n[A] <∞ a.s. for large enough n by Borel-Cantelli lemma

(as the probability of the event that Pk,n[A] = 0 is finitely-summable, as P (A = 0) < 1 by

the overlap assumption (Assumption A). Then 1/Pk,n[A]
p→ 1/P [A] for large enough n, so

that 1/Pk,n[A] = OP (1).

Now we address the numerator of ck,n. For brevity, call this c
num
k,n .

cnumk,n = Pk,n

[
A

π̂−k,n(X)
(Y − µ̂−k,n(X))

]
(46)

= P

[
A

π̂−k,n(X)
(Y − µ̂−k,n(X))

]
+ (Pk,n − P )

[
A

π̂−k,n(X)
(Y − µ̂−k,n(X))

]
(47)
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= P

[
A

π̂−k,n(X)
(Y − µ(X))

]
︸ ︷︷ ︸

=0

+P

[
A

π̂−k,n(X)
(µ(X)− µ̂−k,n(X))

]
(48)

+ (Pk,n − P )
[

A

π̂−k,n(X)
(Y − µ̂−k,n(X))

]
= P

[
A

π̂−k,n(X)
(µ(X)− µ̂−k,n(X))

]
+ (Pk,n − P )

[
A

π̂−k,n(X)
(Y − µ̂−k,n(X))

]
(49)

so that

|cnumk,n | ≤
1

η
P |µ(X)− µ̂−k,n(X)|+ 1

η
(Pk,n − P ) |Y − µ̂−k,n(X)| (50)

where the inequality is by the overlap assumption (Assumption A) as A/π̂−k,n(X) ≤ 1/η.

We show the terms in the last line are all oP (n
−1/4). The first term is upper bounded

by 1
η∥µ̂−k,n(X) − µ(X)∥L2(P ) = oP (n

−1/4) by Assumption F. For the second term, we

use Lemma 1 to show n1/4(Pk,n − P )|Y − µ̂−k,n(X)| p→ 0: it has mean of 0 and variance

≤ n1/2

n ∥Y − µ̂−k,n∥L2(P ). This upper bound on variance goes to 0, which follows from

Assumptions F and C:

∥Y − µ̂−k,n∥L2(P ) ≤ ∥Y − µ∥L2(P ) + ∥A(µ− µ̂−k,n)∥L2(P )

≤ B + ∥µ− µ̂−k,n∥L2(P )

= B + oP (n
−1/4).

We arrive at the desired result ck,n = oP (n
−1/4) as ck,n = cnumk,n /c

den
k,n , and we just showed

that 1/cdenk,n = OP (1) and c
num
k,n = oP (n

−1/4). Note that we have shown Assumption G for

any sequence of π̂−k,n’s, as they are bounded by a constant.

Showing Assumption H: To show (Pk,n − P )(µ̂C−k,n(X) − µ̂−k,n(X)) = oP (n
−1/2), in

the case of the constant shift µ̂C(X) = µ̂(X) + ck,n, note that µ̂C−k,n(X)− µ̂−k,n(X) = ck,n

for every X. Therefore,

(Pk,n − P )(µ̂C−k,n(X)− µ̂−k,n(X)) = (Pk,n − P )ck,n = 0,
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with ck,n < ∞ a.s. for large enough n (which exists by Borel-Cantelli lemma, as in when

we showed Assumption G).

B.5 TMLE Satisfies Assumptions G and H

Recall that we showed how a version of the TMLE for estimating the ATE with continuous

unbounded outcomes also satisfies the C-Learner formulation in Section 3.1. Here we

show that a cross-fitted version of the TMLE for estimating the ATE with continuous

unbounded outcomes additionally satisfies Assumptions G and H, so that Theorems 2 and

3 follow through Proposition 4. Note that the formulation below fits a separate ϵ⋆k,n per

cross-fitting split for consistency with C-Learner, rather than one ϵ⋆ overall as described

in the cross-validated version of TMLE in [57].

µ̂C−k,n(X) = µ̂−k,n(X) + ϵ⋆k,n
A

π̂−k,n(X)
, where ϵ⋆k,n =

Pk,n

[
A

π̂−k,n(X)(Y − µ̂−k,n(X))
]

Pk,n

[
A

π̂2
−k,n(X)

] .

Showing Assumption G: Observe that by Assumption A∥∥∥∥ϵ⋆k,n A

π̂−k,n(X)

∥∥∥∥
L2(P )

≤ 1

η
∥ϵ⋆k,n∥L2(P )

so it suffices to show that ϵ⋆k,n = oP (n
−1/4). Note that since π̂−k,n(x) ≤ 1 for all x,

|ϵ⋆k,n| ≤
Pk,n

[
A

π̂−k,n(X)(Y − µ̂−k,n(X))
]

Pk,n

[
A

π̂−k,n(X)

] ≤ |ck,n| (51)

where ck,n is the constant adjustment in Section B.4, so that ϵ⋆k,n = oP (n
−1/4).

Showing Assumption H: We want to show

(Pk,n − P )(µ̂⋆−k,n(X)− µ̂−k,n(X)) = (Pk,n − P )
(
ϵ⋆k,n

A

π̂−k,n(X)

)
= oP (n

−1/2).
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Note that

(Pk,n − P )
(
ϵ⋆k,n

A

π̂−k,n(X)

)
= ϵ⋆k,n(Pk,n − P )

(
A

π̂−k,n(X)

)
and that (Pk,n − P )

(
A

π̂−k,n(X)

)
= OP (n

−1/2) by Lemma 1, since |A/π̂−k,n(X)| ≤ 1/η a.s.

by Assumption A. Additionally, ϵ⋆k,n = oP (n
−1/4), by the argument above where we showed

Assumption G. The desired result follows by taking the product of the rates for ϵ⋆k,n and

(Pk,n − P )
(

A
π̂−k,n(X)

)
.

C Additional Proof Notes

C.1 Why we have Assumption H

In settings where µ̂C−k,n is independent of Pk,n, Assumption G can be used to show As-

sumption H, e.g using Lemma 1. As a reminder, these assumptions are as follows:

• Repeat of Assumption G: For all k,

∥µ̂C−k,n − µ̂−k,n∥L2(P ) = oP (n
−1/4).

• Repeat of Assumption H:

(Pk,n − P )(µ̂C−k,n(X)− µ̂−k,n(X)) = oP (n
−1/2).

However, Assumption G may not imply Assumption H in our setting, as µ̂C−k,n is con-

structed to depend on Pk,n. If we allow µ̂C−k,n to be related to µ̂−k,n in an arbitrary way

that follows Assumption G, we can construct µ̂C−k,n, µ̂−k,n where Assumption H does not

hold. Here is an example:

Let µ̂−k,n be whatever it would be (it doesn’t matter because of how we’ll define µ̂C−k,n

in terms of µ̂−k,n), and let Pk,n consist of x1, . . . , xn/K . Recall that µ̂C−k,n can depend on

x1, . . . , xn/K . Here, we define

µ̂C−k,n(x) = µ̂−k,n(x) +

n/K∑
i=1

1 {x = xi}
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so that µ̂C−k,n = µ̂−k,n +
∑n/K

i=1 δ(xi) with δ the dirac delta function. Then

P |µ̂C−k,n(X)− µ̂−k,n(X)| = 0

Pk,n|µ̂C−k,n(X)− µ̂−k,n(X)| = 1

so that

(Pk,n − P )|µ̂C−k,n(X)− µ̂−k,n(X)| = 1

so that Assumption H does not hold. However, Assumption G still holds as

P |µ̂C−k,n(X)− µ̂−k,n(X)|2 = 0.

Even though µ̂C−k,n is some weird measure 0 modification of µ̂−k,n, we can also construct

other, less weird modifications: for example, instead of adding dirac deltas δ(xi), we could

instead add kernels of height 1 around x1, . . . , xn/K and decreasing width (while adjusting

kernels to make sure kernels for different xi, xj do not overlap) to again satisfy Assump-

tion G but not Assumption H.

D Proofs of Asymptotic Properties for Dual C-Learner

In this section we formally define the dual C-Learner and show that it is semiparametrically

efficient (Section D.1) and doubly robust (Section D.2).

First, we define the dual C-Learner. We use cross-fitting, as in Section 6. Consider K

even data splits in a dataset of size n. For each k = 1, . . . ,K, on the training fold P−k,n,

we train an outcome model µ̂−k,n(x) to estimate P [Y | X = x,A = 1]. The C-Learner

optimizes the prediction loss evaluated under P−k,n, subject to the first-order correction

constraint evaluated on the evaluation fold Pk,n:

π̂C
′

−k,n ∈ argmin
π̃∈Fπ

{
P−k,n[π̃(X)A(1− π̃(X))1−A] : Pk,n

[
n

n∑
i=1

(
1− Ai

π̃(Xi)

)
µ̂−k,n

]
(Xi) = 0

}
(52)
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The final dual C-Learner estimator is given by

ψ̂C′
n :=

1

K

K∑
k=1

Pk,n

[
A

π̂C
′

−k,n(X)
Y

]
. (53)

In this section we show the counterpart of the asymptotic properties for the C-Learner,

but for the dual C-Learner. As before, we use cross-fitting with K folds. For brevity we

write ψ̂C′
n to denote the cross-fitted dual C-Learner estimator.

D.1 Asymptotic variance of dual C-Learner

We require the following additional assumptions to show asymptotic variance for the dual

C-Learner. Assumptions I and J are the dual versions of Assumptions B and D.

Assumption I (Convergence rates of propensity and constrained outcome models). For

all k ∈ {1, . . . ,K}, both π̂C′
, µ̂ are consistent,

∥π̂C′
−k,n − π∥L2(P ) = oP (1), ∥µ̂−k,n − µ∥L2(P ) = oP (1)

and also

∥π̂C′
−k,n − π∥L2(P ) · ∥µ̂C−k,n − µ∥L2(P ) = oP (n

− 1
2 ).

Assumption J (Empirical process assumption).

(Pk,n − P )(Y A · (π̂C
′

−k,n(X)−1 − π(X)−1)) = oP (n
−1/2).

Like Assumption D, Assumption I may need to be shown on a case-by-case basis for

different settings and model classes. Under these assumptions, the dual C-Learner has the

following asymptotics:

Theorem 5 (Asymptotic variance of dual C-Learner). Under Assumptions A, I, C, and

J,

√
n(ψ̂C′

n − ψ(P ))
d
⇝ N(0, σ2) where σ2 := VarP

(
A

π(X)
(Y − µ(X)) + µ(X)

)
.
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The proof of this theorem is very similar to the proof for Theorem 2 with proof in

Section B.1.

Proof Let Z = (X,A, Y ) as defined in Section 2.1. Let P denote the true population

distribution of Z. Let ψ be the ATE as before, but this time, write

ψ(P ) = P

[
A

P (A = 1 | X)
Y

]
. (54)

Note that this ψ is equivalent to ψ as defined in Section 2.1:

P

[
A

P (A = 1 | X)
Y

]
= P

[
1(A = 1)

P (A = 1 | X)
P (Y | X)

]
= P [P [Y | A = 1, X]].

Functionals ψ may admit a distributional Taylor expansion, also known as a von Mises

expansion [20], where for any distributions P, P on Z, we can write

ψ(P )− ψ(P ) = −
∫
φ(z;P )dP (z) +R2(P , P ) (55)

where φ(z;P ) which can be thought of as a “gradient” satisfying the directional derivative

formula ∂
∂tψ(P + t(P − P )) |t=0=

∫
φ(z;P )d(P − P )(z). (W.l.o.g. we assume φ(z;P ) is

centered so that
∫
φ(z;P )dP (z) = 0.) Here, −

∫
φ(z;P )dP (z) is the first-order term, and

R2(P , P ) is the second-order remainder term, which only depends on products or squares

of differences between P, P .

When ψ is the ATE as in our setting, ψ admits such an expansion [27]

φ(Z;P ) :=
A

π(X)
(Y − µ(X)) + µ(X)− ψ(P ), (56)

where π(x) := P [A = 1 | X] and µ(x) := P [Y | A = 1, X]. In particular, we get the

following explicit formula for the second-order term

R2(P , P ) :=

∫
π(x)

(
1

π(x)
− 1

π(x)

)
(µ(x)− µ(x)) dP (x). (57)

We will apply this to our C-Learner estimator as defined in Section 6. Recall that µ̂−k,n

is trained to predict outcome given X and A = 1 on P−k,n, and π̂
C′
−k,n is trained to predict
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treatmentA givenX using P−k,n under the constraint that Pk,n

[(
1− A

π̂C′
−k,n(X)

)
µ̂−k,n(X)

]
=

0. Our dual C-Learner estimator is the mean of plug-in estimators across folds: for each

fold, write ψ̂C′
k,n = ψ(P̂C′

k,n) so the C-Learner estimate is the average ψ̂C′
n = 1

K

∑K
k=1 ψ̂

C′
k,n.

Noting that any distribution decomposes P = PX × PA|X × P Y |A,X and ψ(P ) =

PX [µ(X)], the following definitions

P̂C′
X;k,n := PX;k,n

P̂C′

A|X;k,n[A = 1 | X = x] := π̂C
′

−k,n(x)

P̂C′

Y |A,X;k,n[Y | A = 1, X = x] := µ̂−k,n(x)

provide a well-defined joint distribution P̂C
k,n.

For each data fold k, we use the distributional Taylor expansion above, where we replace

P with the joint distribution P̂C′
k,n

ψ(P̂C′
k,n)− ψ(P ) = −Pφ(Z; P̂C′

k,n) +R2(P̂
C′
k,n, P )

= (Pk,n − P )φ(Z;P )− Pk,nφ(Z; P̂
C′
k,n)

+ (Pk,n − P )(φ(Z; P̂C′
k,n)− φ(Z;P )) +R2(P̂

C′
k,n, P ). (58)

Observe that by using Equation (56) and the definition of the dual C-Learner,

Pk,nφ(Z; P̂
C′
k,n) = Pk,n

[
A

π̂C
′

−k,n(X)
(Y − µ̂−k,n(X)) + µ̂−k,n(X)− ψ(P̂C′

k,n)

]

= Pk,n

[(
1− A

π̂C
′

−k,n(X)

)
µ̂−k,n(X)

]
︸ ︷︷ ︸

=0 by dual C-Learner constraint

+Pk,n

[
A

π̂C
′

−k,n(X)
Y − ψ(P̂C′

k,n)

]
︸ ︷︷ ︸

=0 by (54)

.

Taking the average of Equation (58) over k = 1, . . . ,K, we can write the error ψ̂C′
n − ψ as

the sum of three terms.

ψ̂C′
n − ψ =

1

K

K∑
k=1

(Pk,n − P )φ(Z;P )︸ ︷︷ ︸
S∗
k
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+
1

K

K∑
k=1

(Pk,n − P )
(
φ(Z; P̂C′

k,n)− φ(Z;P )
)

︸ ︷︷ ︸
T1k

+
1

K

K∑
k=1

R2(P̂
C′
k,n, P )︸ ︷︷ ︸
T2k

. (59)

Using the decomposition (59), we write

S∗ =
1

K

K∑
k=1

S∗
k , T1 =

1

K

K∑
k=1

T1k, T2 =
1

K

K∑
k=1

T2k, (60)

so that ψ̂C
n − ψ = S∗ + T1 + T2. We address the terms S∗, T1 and T2 separately. The first

term can be rewritten as

S∗ =
1

K

K∑
i=1

(Pk,n − P )φ(Z;P ) = (Pn − P )φ(Z;P )

so that by the central limit theorem,

√
nS∗ d
⇝ N (0,VarP (φ(Z;P ))) .

Observe that this quantity depends only on ψ and P , so that it cannot be made smaller

by choice of estimator. If the variance of an estimator for ψ is VarP (φ(Z;P )), then it is

semiparametrically efficient in the local asymptotic minimax sense (Theorem 25.21 of [59]).

Thus, it suffices to show that the rest of the terms, T1 and T2, are oP (n
−1/2), so that

√
n(ψ̂C

n − ψ) =
√
nS∗ + oP (1)

d
⇝ N (0,VarP (φ(Z;P ))) .

For a fixed k, |T1k| = oP (n
−1/2) by Assumption J so that |T1| = oP (n

−1/2) as desired. The

second-order remainder term in the distributional Taylor expansion (55) where we replace

P with P̂C′
k,n is

T2k =

∫
π(x)

(
1

π̂C
′

−k,n(x)
− 1

π(x)

)
(µ̂−k,n(x)− µ(x)) dP (x).
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Under the overlap assumption (Assumption A) and Cauchy-Schwarz,

|T2k| ≤
1

η

∫ ∣∣∣π̂C′
−k,n(x)− π(x)

∣∣∣ |µ̂−k,n(x)− µ(x)| dP (x)

≤ 1

η

∥∥∥π̂C′
−k,n − π

∥∥∥
L2(P )

∥µ̂−k,n − µ∥L2(P ) . (61)

By Assumption I, |T2k| = oP (n
−1/2) so that |T2| = oP (n

−1/2) as desired.

D.2 Double robustness of dual C-Learner

We state assumptions for double robustness for the dual C-Learner, as well as the theorem.

Assumption K is the counterpart to Assumption E, and Theorem 6 is the counterpart to

Theorem 3.

Assumption K (At least one of π̂C
′
, µ̂ is consistent). For all k, the product of the errors

for the outcome and propensity models decays as

∥π̂C′
−k,n − π∥L2(P ) · ∥µ̂−k,n − µ∥L2(P ) = oP (1).

Using Assumption K in place of Assumption B, we arrive at the following result:

Theorem 6 (Dual C-Learner is doubly robust). The dual C-Learner (53) is consistent

under Assumptions A, C, J, and K.

Showing double robustness of the dual C-Learner is completely analogous to Sec-

tion B.2.

E Additional Details and Results of Experiments

See Section G for how point estimates and confidence intervals are calculated for the

estimators in Section 5.
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E.1 Experiments for Kang and Schafer [31]

E.1.1 Implementation Details

Linear Outcome Models. Here, Ptrain = Peval, as consistent with the original paper by

Kang and Schafer [31]7. There is no Pval as there are no hyperparameters to tune.

For the direct method and initial outcome model for AIPW, self-normalized AIPW, and

TMLE, we simply regress the dependent variable Y on the observed covariates X using the

samples with labels. We use all the samples available to fit a logistic regression model for

the treatment variable A (outcome was observed) using the covariates X. Following [31],

in both models, we omit the intercept term when fitting the propensity scores and initial

outcome model. Our main insights do not change if an intercept is added to the outcome

and propensity models.

We run datasets with 200 and 1000 observations, with and without a truncation thresh-

old of 5%. For each configuration, we generate 1000 seeds.

Table 7 displays the results for the bias, mean absolute error, root mean squared error

(RMSE), and median absolute error over 1000 simulations with sample sizes equal to 200

and 1000. We also include the results when truncating to 5% is performed, meaning that

π̂(X) is truncated to have a lower bound of 0.05. Note that truncation greatly improves the

performance of propensity-based methods such as AIPW and TMLE. Without truncation,

C-Learner is the best method across all samples when compared to other unbiased methods

and is outperformed only by the direct method. When truncation is introduced, the C-

Learner is similar in performance to other asymptotically optimal methods.

For the coverage computation, we construct the confidence intervals as described in

Section G and empirically check for each method if it covers the true population mean.

Table 8 presents the coverage results for a 95% confidence level. It is worth noticing that

coverage results greatly deteriorate when the sample size increases for all asymptotically

optimal methods, most likely because both the outcome model and the propensity model

are mispecified, and consistency is ensured when at least one of the models is consistent

(see Section 6).

Finally, Table 10 displays the results for bias and mean absolute error (MAE) for

7Although sample splitting could be better, we have chosen to replicate [31] as closely as possible.
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estimating P [Y (0)] rather than P [Y (1)]. In this case, all the asymptotic optimal methods

perform very similarly, and all are better than the direct method with OLS. To conclude, we

emphasize that the C-Learner is the only asymptotically optimal method that demonstrated

good performance across all configurations of data size, truncation procedure, and data-

generating process by either achieving comparable performance to other asymptotically

optimal methods, or by improving performance, sometimes by an order of magnitude.

Linear Models with Logistic Link. In order to instanciate the TMLE and the C-

Learner using the logistic link, first we normalize the observed outcome Y . In particular,

for the observed dataset we compute Ymax = (1 + α)maxi:Ai=1{Yi} and Ymin = (1 −
α)mini:Ai=1{Yi}, where the scaling parameter α accounts for the fact that for the observed

dataset, both the empirical maximum and empirical minimum are most likely biased. We

chose this procedure to match previous work in the literature, such as the one proposed in

Van der Laan and Rose [57], and it does not mean to provide unbiased estimators for such

estimates. Observed outcomes are then rescaled by computing Ỹi = (Yi − Ymin)/(Ymax −
Ymin). In the experiments reported in Section 5, we use α = .1 as this was the parameter

used in Van der Laan and Rose [57] when analyzing the same dataset. Different values of

α ranging from 0.01 to 0.2 leads to the same insights we provide in the main text, with

the C-Learner-L dominating the MAE obtained with TMLE-L. The default α for the tmle

package available in R [24] is 0.01.

TMLE-L. Abusing notation, define σ(X) := 1/(1 + exp(−X)), which is the logistic link

function. As an starting point, one solve for the fractional logistic regression using the

scaled outcomes Ỹ :

min
θ

{
−

n∑
i=1

Ai

[
Ỹi log σ(θ

⊤xi) + (1− Ỹi) log(1− σ(θ⊤Xi))
]}

,

which leads to µ̂(Xi) = 1/(1 + exp(−X⊤θ)). The second step is to define a parametric

submodel and find the optimal fluctuation parameter ϵ. Define

µ̂(Xi, Hi, ϵ) :=
1

1 + e
− log

µ̂(Xi)
1−µ̂(Xi)

+ϵHi

,
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and note that µ̂(Xi, Hi, ϵ) is a shift of µ̂(Xi) under the logit transformation in the direction

of Hi. Therefore, under the logistic link, the optimal fluctuation can be fitted by solving

ϵ⋆ := argmin
ϵ∈R

− 1

n

n∑
i=1

Ai

(
Ỹi log µ̂(Xi, Hi, ϵ)− (1− Ỹi) log(1− µ̂(Xi, Hi, ϵ))

)
. (62)

It is straightforward to verify that the first-order conditions for ϵ imply that the empir-

ical evaluation of (4) at µ̂(Ai, Xi, Hi, ϵ
⋆) is zero. Next, the TMLE procedure is executed

as usual by evaluating the fluctuated model on the whole sample. To implement TMLE

with the logistic link, we use the tmle package available in R [24].

C-Learner-L. For the C-Learner-L implementation we solve

θ⋆ = argmin
θ

−
n∑

i=1

Ai

[
Ỹi log σ(θ

⊤Xi) + (1− Ỹi) log(1− σ(θ⊤Xi))
]

such that

n∑
i=1

Ai
π̂(Xi)

(
Ỹi − σ(θ⊤Xi)

)
= 0.

Note that this is a convex optimization problem with nonlinear constraints. In order

to solve it, we use a Sequential Least Squares Programming algorithm available in the R

package nloptr [43].

C-Learner-Dual And Covariate Balancing Methods We describe the implementa-

tion of the C-Learner-Dual for linear propensity models under the logistic link. We also

discuss the implementation of the benchmark methods. For all models, we also implement

their self-normalized version, in which the propensities sum to one.

CBPS We implement the CBPS approach of [28] using the CBPS package available in

R [24]. We use a linear specification and the over-identified model that is optimized for

both propensity score fitting and the balancing constraint with the two-step procedure,

following the same procedure as in the package documentation for the KS dataset.
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Linear Fluctuation of Propensity Scores We implement a one-step calibration of

the initial propensity scores via a low-dimensional fluctuation. The procedure resembles

in spirit the parametric submodel approach of TMLE for outcome models for achieving

the semiparametric variance bound. We follow [44]’s construction for µ̂LIK2: Define the

calibration covariates and form the extended propensity model

ωi(λ) = π̂i +H⊤
i λ, ℓ(λ) =

n∑
i=1

[
Ai logωi + (1−Ai) log(1− ωi)

]
.

where Hi = (1− π̂(Xi))µ̂(Xi) and πi is the vector of propensities fitted by standard MLE.

We maximize likelihood ℓ(λ) with respect to λ to obtain λ̂. In particular, we use the

Nelder-Mead method available in the package optim in R.

Next, we fix ω and proceed to the second step, and we solve

max
λstep

∑
i

[
T
log(πi + λ′step[1, µ(Xi)]

⊤)− log(ωi)

1− πi
− λ′step[1, µ(Xi)]

⊤

]
.

Define ωstep = πi + λ′step[1, µ(Xi)]
⊤. The first order condition implies that

1

n

n∑
i=1

(
1− Ai

ωstep(Xi)

)
µ̂(Xi) = 0,

which is the C-Learner-Dual constraint.

Similar to the C-Learner, the resulting estimator attains the semiparametric variance

bound, and is doubly robust. Our implementation for linear fluctuations differs from [44]’s

construction of µ̂LIK2 only in that we omit the h2 component in the first step, which, in

their paper, makes the resulting estimator sample-bounded (in the sense that estimator

values are within the range of outcome values seen in the sample); this omission is for a

more fair comparison between estimators.

C-Learner-Dual First, we parametrize the propensity-score model by

πβC-Learner-Dual
(Xi) =

exp
(
X⊤

i βC-Learner-Dual

)
1 + exp

(
X⊤

i βC-Learner-Dual

) ,
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and fit βC-Learner-Dual by maximizing the Bernoulli log-likelihood on the treatment indicators

Ai. Equivalently, we minimize the negative log-likelihood

−ℓ
(
βC-Learner-Dual

)
= −

n∑
i=1

[
Ai ηi − log

(
1 + eηi

)]
, ηi = X⊤

i βC-Learner-Dual.

Because this objective is smooth and convex, we also supply its gradient in closed form:

∇βC-Learner-Dual

[
−ℓ(βC-Learner-Dual)

]
= −X⊤(A−p(βC-Learner-Dual)

)
, p(βC-Learner-Dual)i =

eηi

1 + eηi
.

Next, to ensure semiparametric efficiency of the resulting inverse–propensity-weighted

estimator, we impose the finite-sample balance constraint

1

n

n∑
i=1

(
1− Ai

πβC-Learner-Dual
(Xi)

)
µ̂(Xi) = 0,

where µ̂(Xi) is a fixed outcome-model prediction. Rearranging shows this is equivalent (up

to an additive constant) to

n∑
i=1

Ai µ̂(Xi) e
−X⊤

i βC-Learner-Dual −
n∑

i=1

(1−Ai) µ̂(Xi) = 0.

We likewise provide the Jacobian of this constraint:

∇βC-Learner-Dual

[
constraint

]
= −

n∑
i=1

Ai µ̂(Xi) e
−X⊤

i βC-Learner-Dual Xi.

Because we now have a convex, differentiable objective with one smooth equality

constraint, we solve it using an augmented-Lagrangian scheme. In particular, we use

the nloptr package ([43]) with the NLOPT LD AUGLAG solver. Tolerance and maxi-

mum number of iterations are set to 10−8 and 1000, respectively. Finally, the solution

β̂C-Learner-Dual defines the dual C-Learner propensity estimate

π̂C(Xi) =
exp
(
X⊤

i β̂C-Learner-Dual

)
1 + exp

(
X⊤

i β̂C-Learner-Dual

) ,
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and the average treatment effect is then estimated by

ψ̂ =
1

n

n∑
i=1

Ai

π̂C(Xi)
Yi.

Gradient Boosted Regression Tree Outcome Models. We demonstrate the flexi-

bility and performance of the C-Learner in which we instantiate C-Learner using gradient

boosted regression trees using the XGBoost package [12] with a custom objective, as out-

lined in Section 4.3. π̂ is fit as a logistic regression on covariates X using L1 regularization

(LASSO).

For each seed, and sample size, we randomly take half of the data for Ptrain and half of

the data for Peval. For the first phase of Algorithm 1, we perform hyperparameter tuning

using Pval = Peval. Hyperparameter tuning is performed using a grid search for the following

parameters: learning rate (0.01, 0.05, 0.1, 0.2), feature subsample by tree (0.5, 0.8, 1), and

max tree depth (3, 4, 5). We also set the maximum number of weak learners to 2 thousand,

and we perform early stopping using MSE loss on Pval for 20 rounds. Hyperparameter

tuning is performed separately for C-Learner and the initial outcome model.

For the second phase of Algorithm 1, we use the set of hyperparameters found in the

first stage. The weak learners are fitted using Peval and Pval = Peval. In order to avoid

overfitting in the targeting step, we use a subsampling of 50% and early stopping after 20

rounds.

In Table 9 we provided additional details with truncation in order to understand the

impact in the results of AIPW and TMLE that produced unreliable estimates for sample

sizes of 200 and 1000 as well as the impact of truncation in the other estimates. When

“small” truncation is performed (0.1%), C-Learner is still better than any other estimator.

When truncation to 5% is performed, TMLE achieves the best pointwise performance, and

C-Leaner and AIPW-SN are statically equal in terms of MAE.

Finally, in Table 11 we present the coverage results for the estimators computed without

truncation and a sample size of 200 and 1000 presented in the main text on Table 2. For a

sample size of 200, asymptotically optimal methods have similar coverage and substantially

lower than the target of 95%. When the sample size increases, the coverage results of C-

Learner deteriorate, although it still presents the best performance in terms of MAE.
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E.1.2 Estimator Performance When Varying Overlap Between Treatment and

Control

In order to test the sensitivity of different asymptotic optimal methods with respect to

the propensity score, we modify the probability of treatment in the data generation by

introducing a scaling parameter c so that

π(ξ) =
exp(c(−ξ1 + 0.5ξ2 − 0.25ξ3 − 0.1ξ4))

1 + exp(c(−ξ1 + 0.5ξ2 − 0.25ξ3 − 0.1ξ4))
, (63)

where we take c ∈ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75}. The case in which c = 1 matches the

standard setup of [31]. As discussed in Section 5.1, the closer the value of the scaling c to 0,

the more concentrated the treatment probabilities are to 50%. In the other direction, the

higher the value of c, the more extreme propensities are observed, increasing the variance of

the propensity scores, pushing the overlap assumption to the limit and making the problem

of causal estimation more challenging.

For each value of the parameter c, we generate 1000 seeds of sample size 200 with no

truncation. We use linear outcome models and logistic propensity models. The results for

the mean absolute error are displayed in Figure 4. In Table 5 and Table 6 we show the

main statistics for the fitted propensity scores π̂(X) and 1π̂(X) as a function of the scaling

parameter. The statistics are taken over all observations (treated and non-treated).

Scaling c Stdev π̂(X) Min π̂(X) Max π̂(X) CVar π̂(X)

0.25 0.08 (0.001) 0.2021 (0.003) 0.70 (0.003) 0.296 (0.003)
0.50 0.13 (0.001) 0.0756 (0.002) 0.77 (0.002) 0.186 (0.002)
0.75 0.17 (0.001) 0.0240 (0.001) 0.83 (0.002) 0.102 (0.002)
1.00 0.21 (0.001) 0.0066 (0.000) 0.88 (0.002) 0.055 (0.001)
1.25 0.24 (0.001) 0.0018 (0.000) 0.92 (0.001) 0.029 (0.001)
1.50 0.26 (0.001) 0.0006 (0.000) 0.94 (0.001) 0.016 (0.001)
1.75 0.28 (0.001) 0.0002 (0.000) 0.96 (0.001) 0.009 (0.000)

Table 5. Summary statistics of π̂(X) for different values of scaling parameter c from
Equation (63). We show means across 1000 dataset draws of size 200, with standard error
in parentheses. CVar refers to the mean of the 5% of smallest values.
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Scaling c Stdev 1/π̂(X) Min 1/π̂(X) Max 1/π̂(X) CVar 1/π̂(X)

0.25 0.5 (0) 1.42 (0.005) 5 (1.10) 4 (0.128)
0.50 1.3 (1) 1.30 (0.004) 13 (7.57) 6 (1.05)
0.75 3.9 (11) 1.20 (0.003) 42 (148) 15 (16.3)
1.00 13.2 (1016) 1.13 (0.002) 152 (14325) 41 (1453)
1.25 44.0 (16634) 1.09 (0.001) 543 (235232) 117 (23538)
1.50 136.3 (548595) 1.06 (0.001) 1692 (7758318) 348 (775940)
1.75 440.1 (94410206) 1.04 (0.001) 5585 (1335161973) 1003 (133516504)

Table 6. Summary statistics of 1/π̂(X) for different values of scaling parameter c from
Equation (63). We show means across 1000 dataset draws of size 200, with standard error
in parentheses. CVar refers to the mean of the 5% of largest values.

66



E.1.3 Additional Results

(a) N = 200, no truncation

Method Bias Mean Abs Err RMSE Median Abs Err

Direct -0.00 (0.103) 2.60 (0.061) 3.24 (0.457) 2.13
IPW 22.10 (2.579) 27.28 (2.52) 84.45 (2733) 9.87
IPW-SN 3.36 (0.292) 5.42 (0.260) 9.83 (13.45) 3.01

AIPW -5.08 (0.474) 6.16 (0.461) 15.82 (87.1) 3.43
AIPW-SN -3.65 (0.203) 4.73 (0.179) 7.38 (6.14) 3.26
TMLE -111.59 (41.073) 112.15 (41.1) 1302.98 (106) 3.95
C-Learner -2.45 (0.120) 3.57 (0.088) 4.52 (0.912) 2.93

(b) N = 1000, no truncation

Method Bias Mean Abs Err RMSE Median Abs Err

Direct -0.43 (0.044 ) 1.17 (0.028) 1.46 (0.095) 1.00
IPW 105.46 (59.843) 105.67 (59.8) 1894.40 (106) 17.95
IPW-SN 6.83 (0.331) 7.02 (0.327) 12.50 (24.0) 4.09

AIPW -41.37 (24.821) 41.39 (24.8) 785.60 (105) 5.22
AIPW-SN -8.35 (0.431) 8.37 (0.430) 15.97 (46.4) 4.92
TMLE -17.51 (3.493) 17.51 (3.49) 111.77 (104) 4.25
C-Learner -4.40 (0.077) 4.42 (0.076) 5.03 (0.795) 4.21

(c) N = 200, truncation threshold 5%

Method Bias Mean Abs Err RMSE Median Abs Err

Direct -0.00 (0.103) 2.60 (0.061) 3.24 (0.457) 2.13
IPW 5.13 (0.398) 10.47 (0.275) 13.60 (10.055) 8.35
IPW-SN 1.17 (0.132) 3.33 (0.087) 4.32 (0.969) 2.59

AIPW -2.45 (0.121) 3.59 (0.088) 4.54 (0.913) 3.02
AIPW-SN -2.37 (0.118) 3.50 (0.085) 4.42 (0.859) 2.92
TMLE -2.01 (0.107) 3.15 (0.075) 3.95 (0.665) 2.62
C-Learner -2.15 (0.112) 3.31 (0.079) 4.14 (0.734) 2.83

(d) N = 1000, truncation threshold 5%

Method Bias Mean Abs Err RMSE Median Abs Err

Direct -0.43 (0.044) 1.17 (0.028) 1.46 (0.095) 1.00
IPW 8.35 (0.179) 8.67 (0.163) 10.08 (3.413) 8.23
IPW-SN 1.95 (0.062) 2.27 (0.050) 2.76 (0.293) 2.01

AIPW -3.41 (0.053) 3.44 (0.051) 3.80 (0.378) 3.44
AIPW-SN -3.31 (0.052) 3.34 (0.050) 3.70 (0.358) 3.35
TMLE -2.81 (0.046) 2.85 (0.044) 3.17 (0.274) 2.86
C-Learner -3.07 (0.049) 3.10 (0.047) 3.43 (0.310) 3.10

Table 7. Estimator performance in 1000 tabular simulations for the linear specification of
outcome models. “truncation” refers to truncation π̂(X) away from 0. Standard error is
in parentheses. Asymptotically optimal methods are listed beneath the horizontal divider.
We highlight the best-performing overall method other than the direct method in bold.
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N = 200 N = 1000

Method No truncation 5% truncation No truncation 5% truncation

Direct 0.89 0.89 0.88 0.88
IPW 1.00 1.00 1.00 1.00
IPW-SN 1.00 1.00 1.00 1.00

AIPW 0.88 0.90 0.59 0.56
AIPW-SN 0.92 0.91 0.72 0.58
TMLE 0.84 0.90 0.48 0.60
C-Learner 0.91 0.90 0.68 0.58

Table 8. Coverage results for 1000 simulations in the linear specification. Confidence
intervals were set to achieve 95% confidence. Asymptotically optimal methods are listed
beneath the horizontal divider.

(a) N = 200, truncation threshold = 5%

Method Bias Mean Abs Err

Direct -6.10 (0.10) 6.18 (0.10)
IPW 4.45 (0.75) 17.8 (0.52)
IPW-SN -3.40 (0.16) 5.06 (0.10)
Lagrangian -4.94 (0.10) 5.14 (0.09)

AIPW -1.80 (0.14) 3.85 (0.09)
AIPW-SN -2.10 (0.12) 3.64 (0.08)
TMLE -2.84 (0.10) 3.51 (0.08)
C-Learner -3.10 (0.10) 3.68 (0.08)

(b)N = 200, truncation threshold = 0.1%

Bias Mean Abs Err

-6.10 (0.10) 6.18 (0.10)
41 (5.82) 54.2 (5.72)

-1.10 (0.38) 7.20 (0.31)
-4.96 (0.10) 5.16 (0.09)

4.82 (1.27) 10.4 (1.23)
-0.57 (0.26) 5.02 (0.21)
-1.42 (0.17) 4.19 (0.12)
-3.24 (0.09) 3.79 (0.08)

Table 9. Comparison of estimator performance on misspecified datasets from Kang and
Schafer [31] in 1000 tabular simulations using gradient boosted regression trees with 200
samples, 5%, and 0.1% truncation threshold. Asymptotically optimal methods are listed
beneath the horizontal divider. We highlight the best-performing method in bold. Standard
errors are displayed within parentheses to the right of the point estimate. “Lagrangian”
refers to only performing the first stage in Algorithm 1.
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(a) N = 200

Method Bias Mean Abs Err

Direct 4.82 (0.091) 4.94 (0.085)
IPW -0.70 (0.141) 3.44 (0.092)
IPW-SN 2.48 (0.097) 3.23 (0.072)

AIPW 3.23 (0.093) 3.63 (0.077)
AIPW-SN 3.22 (0.092) 3.61 (0.076)
TMLE 3.11 (0.091) 3.50 (0.076)
C-Learner 3.19 (0.092) 3.58 (0.076)

(b) N = 1000

Bias Mean Abs Err

4.80 (0.041) 4.80 (0.041)
-0.83 (0.054) 1.52 (0.036)
2.43 (0.042) 2.47 (0.040)

3.14 (0.041) 3.15 (0.040)
3.12 (0.041) 3.13 (0.040)
3.03 (0.041) 3.04 (0.040)
3.09 (0.041) 3.10 (0.040)

Table 10. Results of 1000 simulations for estimating P [Y (0)] instead of P [Y (1)] with the
linear specification. The standard error is in parentheses. Asymptotically optimal methods
are listed beneath the horizontal divider.

Method N = 200 N = 1000

Direct 0.35 (0.01) 0.12 (0.01)
IPW 1.00 (0.00) 0.98 (0.01)
IPW-SN 0.85 (0.01) 1.00 (0.00)
Lagrangian 0.84 (0.01) 0.71 (0.01)

AIPW 0.85 (0.01) 0.85 (0.01)
AIPW-SN 0.85 (0.01) 0.85 (0.01)
TMLE 0.86 (0.01) 0.87 (0.01)
C-Learner 0.82 (0.01) 0.77 (0.01)

Table 11. Coverage results for 1000 simulations using gradient boosted regression trees.
Confidence intervals were set to achieve 95% confidence. Asymptotically optimal methods
are listed beneath the horizontal divider. “Lagrangian” refers to only performing the first
stage in Algorithm 1.

Balancing results, linear outcome model As discussed in Section 2, covariate bal-

ancing techniques imply constraints, possibly via customized loss functions, to equate the

covariates of samples in treatment and control for a given propensity score model π̂, thus,

informing how to constraint or estimate the propensity model π̂. Naturally, methods that

make use of propensity score such as IPW (the basic CBPS approach), AIPW, TMLE and

C-Learner, may also benefit from a tailored propensity score function π̂.

Therefore, we also provide in Table 12 a comparison with the Covariate Balancing

Propensity Score (CBPS). We discuss the implementation details of CBPS in Section E.1.1.

Roughly speaking, all asymptotically optimal methods improve or maintain its performance

when using propensity scores via covariate balancing, despite an increase in the MAE
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(a) N = 200

Method Bias Mean Abs Err

CBPS-IPW -6.92 (0.26) 8.52 (0.21)
CBPS-IPW-SN -2.98 (0.10) 3.66 (0.08)

CBPS-AIPW -1.68 (0.36) 3.11 (0.24)
CBPS-AIPW-SN -1.69 (0.36) 3.11 (0.24)
CBPS-TMLE -7.20 (5.14) 9.50 (5.10)
CBPS-C-Learner -1.70 (0.36) 3.10 (0.24)

CBPS-TMLE-L -2.01 (0.33) 3.07 (0.24)
CBPS-C-Learner-L -1.85 (0.34) 2.97 (0.24)

(b) N = 1000

Bias Mean Abs Err

1.76 (0.15) 4.00 (0.10)
-1.55 (0.06) 1.88 (0.04)

-3.54 (0.37) 3.58 (0.37)
-3.44 (0.33) 3.49 (0.33)
-7.54 (2.48) 7.55 (2.48)
-3.10 (0.20) 3.15 (0.19)

-2.76 (0.15) 2.79 (0.14)
-2.76 (0.18) 2.83 (0.17)

Table 12. Comparison of estimator performance on misspecified datasets from Kang and
Schafer [31] in 1000 tabular simulations, for linear outcome models (Section 5.1.1) using
propensity scores fitted via covariate balancing. We include only methods that makes use
of propensity scores. We highlight the best-performing method in bold. Standard errors
are displayed within parentheses to the right of the point estimate.

standard error. For the sample size of 200, C-Learner with covariate balancing and logistic

loss is the best performance method for the MAE point estimate, although most of the

asymptotically optimal methods are statistically the same. When the sample size is 1000,

covariate balancing with self-normalization is the best performing method.

E.2 CivilComments Experiments (Section 5.2)

E.2.1 Implementation Details

Model and Training Objectives Both propensity and outcome models are a linear

layer on top of a DistilBERT featurizer, with either softmax and cross-entropy loss for

propensity score, or mean squared error for outcome models. For training outcome models,

we only consider training data on which A = 1, as only those terms contribute to the loss.

Hyperparameters and Settings For propensity models, we tried learning rates of

{10−3, 10−4, 10−5} for the setting of l = 10−4 and found that a learning rate of 10−4

performed the best in terms of val loss. Because of computational constraints, we also used

this learning rate for l = 10−2, 10−3.

For outcome models (including C-Learner) in the settings of l ∈ {10−2, 10−3, 10−4},
we tried learning rates of {10−3, 10−4, 10−5, 10−6}. For C-Learner regularization, we tried
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λ taking on values of λ0/Peval[A/π̂(X)]2 where λ0 ∈ {0, 1, 4, 16, 64, 256}. Essentially, the

penalty is λ0 times the square of the bias shift that would be required to satisfy the

condition.

Because of computational constraints, for choosing these hyperparameters (learning

rate, λ), we select a subset of dataset draws, and choose the best hyperparameters based

on each model’s criteria on that small set of dataset draws. Then, after the hyperparameters

are chosen, we run over the entire set of dataset draws.

While hyperparameters for the (usual) outcome model are chosen to minimize val loss,

in contrast, the hyperparameters (learning rate, regularization λ) for the C-Learner out-

come model were selected to minimize the magnitude of the constant shift at the end of

the first epoch, as in Section 4.4. The idea is that if the size of the constant shift is small,

then the regularizer is doing a good job of enforcing the constraint. Although one might

think that larger regularization λ’s would automatically lead to smaller constant shifts, we

do not find this to be the case; the best λ in our settings (64) is not the largest value that

we try (up to 256). Furthermore, the set of hyperparameter values we choose between in

this process are ones that seem to result in reasonable performance, e.g. in terms of MSE

on treated units in the validation set.

The best hyperparameters chosen are in Table 15. We trained all models with batch

size 64. Learning rates decayed linearly over 10 epochs. Optimization was done using the

AdamW optimizer. Weight decay was fixed at 0.1.

We choose the training epoch with the best val loss for each model (cross entropy for

propensity, and MSE for outcome). For C-Learner, we choose the epoch with the best val

MSE.

E.2.2 Additional Results

We consider three data generating processes as in Section 5.2, where treatment assignment

is parameterized by l = 10−4, 10−3, 10−2, respectively. Summary statistics of π̂(X) are in

Table 13, and summary statistics of 1/π̂(X) are in table 14. Hyperparameters for outcome

models are in Table 15. Comparisons of estimators in these settings are in Tables 16, 17, 18.
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Value of l Min π̂(X) Max π̂(X) Std π̂(X) CVar π̂(X)

l = 10−2 0.0014 (0.0001) 0.94 (0.01) 0.15 (0.002) 0.0016 (0.0001)
l = 10−3 0.0004 (0.0000) 0.95 (0.01) 0.15 (0.002) 0.0004 (0.0000)
l = 10−4 0.0003 (0.0000) 0.96 (0.00) 0.16 (0.002) 0.0003 (0.0000)

Table 13. Summary statistics of π̂(X) for values of hyperparameter l = 10−4, 10−3, 10−2

for Section 5.2 experiments. We show means across 100 dataset draws for each value of l,
with standard error in parentheses. CVar refers to the mean of the 5% of smallest values.

Value of l Min 1/π̂(X) Max 1/π̂(X) Std 1/π̂(X) CVar 1/π̂(X)

l = 10−2 1.07 (0.01) 1124.7 (91.0) 237.1 (23.4) 1050.1 (85.3)
l = 10−3 1.06 (0.01) 3244.0 (190.5) 757.7 (54.1) 3090.9 (183.5)
l = 10−4 1.05 (0.00) 4126.9 (214.6) 980.6 (61.4) 3960.2 (205.7)

Table 14. Summary statistics of 1/π̂(X) for values of hyperparameter l = 10−4, 10−3, 10−2

for Section 5.2 experiments. We show means across 100 dataset draws for each value of l,
with standard error in parentheses. CVar refers to the mean of the 5% of largest values.

l = 10−4 l = 10−3 l = 10−2

Outcome model learning rate 10−3 10−3 10−4

C-Learner learning rate (best val MSE) 10−4 10−4 10−4

C-Learner learning rate (min bias shift) 10−5 10−5 10−5

C-Learner λ (best val MSE) 0 16 16
C-Learner λ (min bias shift) 64 64 64

Table 15: Hyperparameters for l = 10−4, 10−3, 10−2 for Section 5.2

Method Bias Mean Abs Err Coverage

Direct 0.173 (0.008) 0.177 (0.007) 0.010 (0.001)
IPW 0.504 (0.084) 0.546 (0.081) 0.760 (0.018)
IPW-SN 0.114 (0.017) 0.153 (0.014) 0.890 (0.010)

AIPW 0.084 (0.043) 0.307 (0.032) 0.830 (0.014)
AIPW-SN 0.116 (0.018) 0.161 (0.014) 0.850 (0.013)
TMLE -1.264 (1.361) 1.802 (1.355) 0.810 (0.015)
C-Learner (best val MSE) 0.103 (0.015) 0.141 (0.011) 0.870 (0.011)
C-Learner (min bias shift) 0.075 (0.012) 0.115 (0.008) 0.900 (0.009)

Table 16. Comparison of estimators in the CivilComments [16] semi-synthetic dataset
over 100 re-drawn datasets, with l = 10−4. Confidence intervals were set to achieve 95%
confidence. Asymptotically optimal methods are listed beneath the horizontal divider. We
highlight the best-performing overall method in bold. Standard errors are displayed within
parentheses to the right of the point estimate.
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Method Bias Mean Abs Err Coverage

Direct 0.147 (0.028) 0.200 (0.025) 0.000 (0.000)
IPW 0.417 (0.064) 0.437 (0.063) 0.840 (0.013)
IPW-SN 0.079 (0.015) 0.120 (0.013) 0.910 (0.008)

AIPW -0.056 (0.052) 0.344 (0.039) 0.950 (0.005)
AIPW-SN 0.089 (0.020) 0.134 (0.018) 0.950 (0.005)
TMLE 0.074 (0.025) 0.144 (0.022) 0.940 (0.006)
C-Learner (best val MSE) 0.067 (0.012) 0.110 (0.009) 0.980 (0.002)
C-Learner (min bias shift) 0.060 (0.011) 0.099 (0.008) 0.990 (0.001)

Table 17. Comparison of estimators in the CivilComments [16] semi-synthetic dataset
over 100 re-drawn datasets, with l = 10−3. Confidence intervals were set to achieve 95%
confidence. Asymptotically optimal methods are listed beneath the horizontal divider. We
highlight the best-performing overall method in bold. Standard errors are displayed within
parentheses to the right of the point estimate.

Method Bias Mean Abs Err Coverage

Direct 0.091 (0.007) 0.099 (0.006) 0.040 (0.004)
IPW 0.346 (0.041) 0.353 (0.040) 0.710 (0.021)
IPW-SN 0.004 (0.005) 0.038 (0.003) 0.950 (0.005)

AIPW -0.172 (0.029) 0.220 (0.026) 0.890 (0.010)
AIPW-SN 0.002 (0.005) 0.040 (0.003) 1.000 (0.000)
TMLE 0.027 (0.005) 0.042 (0.003) 0.990 (0.001)
C-Learner (best val MSE) 0.009 (0.007) 0.053 (0.004) 1.000 (0.000)
C-Learner (min bias shift) 0.001 (0.006) 0.045 (0.003) 1.000 (0.000)

Table 18. Comparison of estimators in the CivilComments [16] semi-synthetic dataset
over 100 re-drawn datasets, with l = 10−2. Confidence intervals were set to achieve 95%
confidence. Asymptotically optimal methods are listed beneath the horizontal divider. We
highlight the best-performing asymptotically optimal method in bold. Standard errors are
displayed within parentheses to the right of the point estimate. C-Learner’s performance is
within standard error of AIPW-SN and TMLE.

C-Learner errors are comparatively more stable for l = 10−4, 10−3. For l = 10−2,

C-Learner is comparable to other asymptotically optimal methods.

E.3 IHDP Tabular Dataset

The Infant Health and Development Program (IHDP) dataset is a tabular semisynthetic

dataset [10] that was first introduced as a benchmark for ATE estimation by Hill [26].

IHDP is based on a randomized experiment studying the effect of specialized healthcare
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interventions on the cognitive scores of premature infants with low birth weight. The

dataset consists of a continuous outcome variable Y , a binary treatment variable A, and 25

covariates X that affect the outcome variable and are also correlated with the treatment

assignment. We use 1000 datasets as in [42, 15].

E.3.1 Gradient Boosted Regression Trees

We instantiate C-Learner using gradient boosted regression trees using the XGBoost pack-

age [12] with a custom objective, as outlined in Section 4.3. π̂ is fit as a logistic regression

on covariates X. Different to the applications presented in the main text, we are interested

in estimating the ATE P [Y (1)−Y (0)] where Y (0) is nonzero. We discuss two alternatives

to instantiate the C-Learner. First, we find an outcome model that takes as input both

covariates and the treatment variable, which leads to the following formulation

µ̂C−k,n = argmin
µ̃∈F

{
P−k,n[(Y − µ̃(A,X))2] : Pk,n

[(
A

π̂(X)
− 1−A

1− π̂(X)

)
(Y − µ̃(A,X))

]
= 0

}
,

and the final estimator becomes

ψ̂C
n :=

1

K

K∑
k=1

Pk,n[µ̂
C
−k,n(1, X)− µ̂C−k,n(0, X)].

This approach is often referred to as the “S-Learner”.

Another alternative is to model the ATE as the difference of two missing outcomes

and fit two outcome models for treated vs. non-treated units. This approach is commonly

referred to as the “T-Learner”. In this case, we estimate two models by solving

µ̂C−k,n,1 ∈ argmin
µ̃∈F

{
P−k,n[A(Y − µ̃(X))2] : Pk,n

[
A

π̂−k,n(X)
(Y − µ̃(X))

]
= 0

}
,

µ̂C−k,n,0 ∈ argmin
µ̃∈F

{
P−k,n[(1−A)(Y − µ̃(X))2] : Pk,n

[
1−A

1− π̂−k,n(X)
(Y − µ̃(X))

]
= 0

}
,

and the final estimator becomes

ψ̂C
n := Peval

1

K

K∑
k=1

Pk,n[µ̂
C
−k,n,1(X)− µ̂C−k,n,0(X)].

74



We empirically observe that the latter approach (T-Learner) is critical for performance in

this setting: using a simple XGBoost T-Learner model significantly improves upon sophisti-

cated S-Learner variants, including state-of-the-art methods such as RieszNet, RieszForest,

and DragonNet [15, 42].

For consistency with prior work [52, 15, 42], for each dataset run, we split the data

in 80% training and 20% for hyperparameter tuning, and use the whole dataset when

evaluating the first-order error term, i.e., Peval = Ptrain ∪ Pval. For each outcome model,

µ̂C−k,n,1 and µ̂C−k,n,0, we follow the same setup described in the Kang & Schafer experiment.

Hyperparameter tuning is performed using a grid search for the following parameters:

learning rate (0.01, 0.05, 0.1, 0.2), feature subsample by tree (0.5, 0.8, 1), and max tree

depth (3, 4, 5). We also set the maximum number of weak learners to 2000, and we perform

early stopping using MSE loss on Pval for 20 rounds. Hyperparameter tuning is performed

separately for C-Learner and the initial outcome model. For the second phase of Algorithm

1, we use the set of hyperparameters found in the first stage. The weak learners are fitted

using Peval. In order to avoid overfitting in the targeting step, we use a subsampling of

50% and early stopping after 20 rounds.

The results for the mean absolute error and their respective standard errors are dis-

played in Table 19. The C-Learner improves upon the direct method while using an identi-

cal model class. The asymptotically optimal estimators perform similarly, and C-Learner’s

advantage over other asymptotically optimal methods is not statistically significant. This

is perhaps not surprising in this setting as the propensity weights do not vary as much here,

in contrast to Kang & Shafer’s example where existing asymptotically optimal methods

performed poorly as estimated propensity weights varied dramatically.

E.3.2 Neural Networks

We also instantiate C-Learner as neural networks (Section 4.4) on the IHDP dataset. In

particular, we demonstrate how C-Learner can use Riesz representers (A), or equivalently,

propensity models in the ATE setting, that are learned by other methods. This demon-

strates the versatility of C-Learner as it is able to leverage new methods for learning Riesz

representers. In Table 20, we demonstrate C-Learner using Riesz representers learned by

RieszNet [15]. C-Learner achieves very similar performance to RieszNet while using the
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Method Bias Mean Abs Err

Direct (Boosting) -0.16 (0.004) 0.188 (0.004)
IPW -1.50 (0.040) 1.500 (0.040)
IPW-SN -0.01 (0.003) 0.110 (0.003)
Lagrangian -0.09 (0.004) 0.144 (0.004)

AIPW -0.05 (0.002) 0.103 (0.003)
AIPW-SN -0.04 (0.002) 0.103 (0.003)
TMLE 0.007 (0.003) 0.103 (0.003)
C-Learner -0.004 (0.003) 0.104 (0.003)

Table 19. Comparison of gradient boosted regression tree-based estimators in the IHDP
semi-synthetic dataset over 1000 simulations. Asymptotically optimal methods are listed
beneath the horizontal divider. We highlight the best-performing method in bold. Standard
errors are displayed within parentheses to the right of the point estimate. “Lagrangian”
refers to only performing the first stage in Algorithm 1. C-Learner’s performance is within
standard error of AIPW-SN.

same Riesz representer. All methods use an outcome model trained in the usual way, except

for RieszNet and C-Learner. In all settings where applicable, we use the Riesz representer

(A/π(X)− (1−A)/(1− π(X)) learned by RieszNet.

We emphasize that this is not meant to be a performance comparison between RieszNet

and C-Learner, for two reasons: first, we present C-Learner as a debiasing framework that

is compatible with other methods for causal inference, including RieszNet; and second, we

found that propensity scores fitted to the IHDP dataset are not extreme, so we expect

C-Learner to perform as well as existing methods, but not to outperform existing methods.

Method Bias Mean Abs Err Coverage

Direct -0.005 (-0.000) 0.118 (0.003) 0.783 (0.025)
IPW -0.789 (-0.025) 0.903 (0.034) 0.455 (0.014)
IPW-SN -0.449 (-0.014) 0.654 (0.035) 0.819 (0.026)

AIPW -0.044 (-0.001) 0.106 (0.003) 0.940 (0.030)
AIPW-SN -0.042 (-0.001) 0.106 (0.003) 0.961 (0.030)
RieszNet (“DR”) -0.033 (-0.001) 0.098 (0.003) 0.972 (0.031)
C-Learner -0.038 (-0.001) 0.098 (0.002) 0.955 (0.030)

Table 20. Comparison of neural network based estimators in the IHDP semi-synthetic
dataset over 1000 simulations. Asymptotically optimal methods are listed beneath the
horizontal divider. We highlight the best-performing asymptotically optimal method in
bold. Standard errors are displayed within parentheses to the right of the point estimate.
All methods use an outcome model trained in the usual way, except for RieszNet and C-
Learner. In all settings where applicable, we use the Riesz representer learned by RieszNet.
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Training Procedure We use lightly modified RieszNet code [15] to generate the Riesz

representers used in all methods. We use the same neural network architecture for RieszNet

outcome models for C-Learner. We use Ptrain, Pval, Peval as in Section E.3.1. Hyperparam-

eters (learning rate, λ) are selected for best mean squared error on Pval for each individual

dataset. For the training objective, we largely follow Section 4.4, with the following modi-

fications for the full ATE rather than assuming that Y (0) = 0: we use the mean squared

error across the full dataset (as it was originally for RieszNet), and we have separate

penalties and bias shifts for A = 1 and A = 0. As in RieszNet training, there is a phase of

“pre-training” with a higher learning rate, and then a phase with a lower learning rate; for

“pre-training” we sweep over learning rates of {10−3, 10−4} for 100 epochs; regular training

uses a learning rate of 10−5 for 600 epochs. Both use the Adam optimizer. For λ we sweep

over values of {0, 0.01, 0.02, 0.04, 0.1, 0.2, 0.4, 1, 2, 4, 8}. Our implementation of RieszNet

as a baseline is almost identical to that of the original paper, except for how we set the

random seed, for initializing neural networks and for choosing train and test split.

Comparisons with results in RieszNet paper Surprisingly, our mean absolute error

results in Section E.3.2, including the ones using regular RieszNet (including their algorithm

code and hyperparameters), often outperform the results reported in the original RieszNet

paper [15]. One difference between our code and the RieszNet code is how random seeds

were set. The random seed affects the train/test split, and also weight initialization for

the neural network. We re-ran the original RieszNet code, and then again with a fixed

seed (set to 123) for every dataset, and we found that the results were noticeably different.

In particular, the RieszNet mean absolute error is smaller with seeds set the second way.

Compare Table 21 and Table 22. In our experiments on this setting, we fix seeds in the

second way.

Method Mean absolute error (s.e.)

Doubly robust 0.115 (0.003)
Direct 0.124 (0.004)
IPW 0.801 (0.040)

Table 21: Original RieszNet IHDP results
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Method Mean absolute error (s.e.)

Doubly robust 0.098 (0.003)
Direct 0.118 (0.003)
IPW 0.903 (0.034)

Table 22: RieszNet IHDP results, with fixed seeds

Relative Performance We’ve seen in Section 5.2 that C-Learner tends to outperform

one-step estimation and targeting in settings with low overlap. Here, it merely performs

about the same as one-step estimation and targeting. It seems as though overlap is not

very low in IHDP, however, based on propensity scores from trained models not taking

on extreme values. Using RieszNet’s learned Riesz representers, the smallest value for

min(π̂, 1 − π̂) across all IHDP datasets is 0.11, which is a fair bit of overlap, especially

in comparison to, say, the settings with low overlap in Section 5.2 where C-Learner out-

performed one-step estimation and targeting methods. Thus, here it is expected that C-

Learner matches the performance of other methods. We further emphasize that C-Learner

is compatible with methods such as RieszNet, making C-Learner generally applicable. To

recap, over all of our experiments, C-Learner appears to perform either comparably to or

better than one-step estimation and targeting, and outperform one-step estimation and

targeting in settings with less overlap.

F TMLE extensions and additional connections

This section discusses existing TMLE extensions that can mitigate practical instabilities

under limited overlap, and additional connections between C-Learner and the TMLE lit-

erature. Our paper’s main focus is not on the extensions and variations of TMLE, but

simply on a new way to debias estimators via constrained optimization, that could poten-

tially be combined with additional assumptions, extensions, variations, etc. Nevertheless,

these connections to TMLE and variations of TMLE merit mentioning.

A key benefit of C-Learner is that it reduces instability, for instance, when propen-

sity score estimates become extreme. We compared C-Learner to basic forms of one-step

estimation and TMLE that do not incorporate additional bounding assumptions or regu-
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larization heuristics. The TMLE framework includes a number of practical heuristics and

assumptions for dealing with limited overlap and bounded outcomes:

• Alternative loss functions and logistic fluctuations: Standard TMLE implementa-

tions in software such as tmle [24] by default enforce certain bounds for continuous

outcomes via a logistic fluctuation, but can also perform the linear model as well. If

outcomes are truly bounded, modeling outcomes using a logistic link will constraint

the resulting estimates to be within these bounds; in contrast, methods such as IPW

and AIPW do not obey such constraints. TMLE with logistic fluctuations is shown

to produce stable estimators [57].

• Regularization of TMLE: regularized variations and extensions of TMLE such as

Collaborative TMLE (C-TMLE) [23, 29, 50, 53] have been shown to perform well in

challenging settings, including those with low overlap [30, 4]. Collaborative TMLE

is a variant of TMLE that selects from a sequence of propensity score models of

increasing complexity, based on their ability to improve the loss of the fluctuated

outcome model, which can discourage selecting propensity score models with extreme

values that hurt estimator stability.

There is a broad literature of other regularized TMLE variants, many of which are designed

to construct stable estimators that perform well in finite samples, such as Adaptive TMLE

(A-TMLE) [47, 56], which adaptively selects between propensity scores of varying com-

plexity. Additional advancements include TMLE methods based on the highly adaptive

lasso (HAL) [6, 7, 48, 58], which offer flexible and robust estimation including empirically

in settings with low overlap. Variations of C-Learner can also be complementary to such

procedures.

Lastly, we note that the theoretical justifications for asymptotic properties for both

C-Learner and TMLE build on the same underlying mathematical frameworks, as both

remove the first-order error term in the distributional Taylor expansion, and then show

that the second-order remainder term is negligible under suitable assumptions. Proofs of

this nature have appeared in the TMLE literature [52, 55, 51, 48, 49]. The main difference

between C-Learner and TMLE is how the first-order error term is fixed to zero: in C-

Learner we impose this constraint directly within our chosen function class of nuisance
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parameters (via constrained optimization), rather than using a specific single-dimensional

parametric fluctuation along the least favorable submodel [9] that produces TMLE.

G Point Estimates and Confidence Intervals

We define point estimates and calculate variance for the estimators considered in the ex-

periments. These are used to calculate estimator error, confidence intervals, and coverage

in the experiments. First, we combine folds: for all Xi in Pn, if Xi is in the kth fold, then

let π̂n(Xi) := π̂−k,n(Xi). We do the same for µ̂, µ̂C . This way, we construct π̂n, µ̂n, µ̂
C
n over

all of the available data, Pn, and where nuisance parameters are only evaluated on data

separate from training.

G.1 Direct Method

The direct method estimator (naive plug-in of the outcome model) is given by

ψ̂direct
n =

1

K

K∑
k=1

ψ̂direct
k,n =

1

K

K∑
k=1

Pk,n[µ̂−k,n(X)] =
1

n

n∑
i=1

µ̂n(Xi). (64)

Let Varn denote the empirical variance, calculated on the sample Pn. Then

Var(ψ̂direct
n ) =

1

n
VarP (µ̂n(X)) ≍ 1

n
Varn(µ̂n(X)),

which we use to estimate the variance of the direct method estimator.

G.2 Inverse Propensity Weighting (IPW)

Under similar notation, the inverse probability weighting method gives the estimator

ψ̂IPW
n =

1

K

K∑
k=1

ψ̂IPW
n =

1

K

K∑
k=1

Pk,n

[
AY

π̂−k,n(X)

]
=

1

n

n∑
i=1

AiYi
π̂n(Xi)

80



The variance of the estimator is given by

VarP (ψ̂
IPW
n ) =

1

n
VarP

(
AY

π̂n(X)

)
≍ 1

n
Varn

(
AY

π̂n(X)

)
.

G.3 Self-Normalized IPW

Consider π̂. Then the self-normalized IPW estimator (a.k.a. Hajek estimator) is

ψ̂IPW-SN =

1
n

∑n
i=1

AiYi
π̂n(Xi)

1
n

∑n
i=1

Ai
π̂n(Xi)

.

Let π̃n(X) = π̂n(X) · 1n
∑ Ai

π̂n(Xi)
so that

ψ̂IPW-SN =
1

n

n∑
i=1

AiYi
π̃n(Xi)

.

Similar to before, the variance of the estimator is given by

VarP (ψ̂
IPW-SN
k,n ) =

1

n
VarP

(
AY

π̃n(X)

)
≍ 1

n
Varn

(
AY

π̃n(X)

)
.

G.4 Any De-Biased Method

This applies to the AIPW, self-normalized AIPW, TMLE and C-Learner. These are first-

order corrected (de-biased) and have asymptotic variance as described in Theorem 2. We

thus calculate the empirical variance of the plug-in in Theorem 2.
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